Selective inhibition of forskolin-stimulated cyclic AMP formation in rat hippocampus by a novel mGluR agonist, 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate
1995; Elsevier BV; Volume: 34; Issue: 8 Linguagem: Inglês
10.1016/0028-3908(95)00061-a
ISSN1873-7064
AutoresDarryle D. Schoepp, Bryan G. Johnson, Craig R. Salhoff, M.J. Valu, Manisha Desai, J. Paul Burnett, Nancy G. Mayne, James A. Monn,
Tópico(s)Neuroinflammation and Neurodegeneration Mechanisms
ResumoMetabotropic glutamate receptors (mGluRs) are a heterogeneous family of G-protein coupled receptors that are linked to multiple second messengers in the rat hippocampus. The compound 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) has been widely used to activate this class of receptors and study their functions in situ. However, 1S,3R-ACPD acts on multiple mGluR subtypes to produce multiple alterations in second messengers. We report here that the aza-substituted analog of 1S,3R-ACPD, 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate (2R,4R-APDC), is a highly selective agonist for negatively-coupled cAMP-linked mGluRs in the rat hippocampus, with similar potency in mGluR2 expressing cells. 1S,3R-ACPD decreases forskolin-stimulated cAMP formation, increases basal cAMP formation, and increases phosphoinositide hydrolysis in the rat hippocampus. However, 2R,4R-APDC inhibited forskolin-stimulated cAMP, but had none of the other activities of 1S,3R-ACPD. Furthermore, 2R,4R-APDC had no measurable ionotropic glutamate receptor affinity in rat hippocampus, as indicated by lack of effects on basal and glutamate agonist-evoked [3H]norepinephrine release. 2R,4R-APDC also inhibited forskolin-stimulated cAMP formation in human mGluR2 expressing cells with about three-fold greater potency than 1S,3R-ACPD, but unlike 1S,3R-ACPD, showed no appreciable activation of phosphoinostide hydrolysis in human mGluR1 alpha expressing cells. Thus, 2R,4R-APDC should be a useful pharmacological agent to explore the functions of mGluRs coupled to inhibition of adenylate cyclase.
Referência(s)