Incorporation of either molybdenum or tungsten into formate dehydrogenase from Desulfovibrio alaskensis NCIMB 13491; EPR assignment of the proximal iron-sulfur cluster to the pterin cofactor in formate dehydrogenases from sulfate-reducing bacteria
2003; Springer Science+Business Media; Volume: 9; Issue: 2 Linguagem: Inglês
10.1007/s00775-003-0506-z
ISSN1432-1327
AutoresCarlos D. Brondino, M.C.G. Passeggi, Jorge Caldeira, Maria João Almendra, Maria J. Feio, José J. G. Moura, Isabel Moura,
Tópico(s)Microbial Fuel Cells and Bioremediation
ResumoWe report the characterization of the molecular properties and EPR studies of a new formate dehydrogenase (FDH) from the sulfate-reducing organism Desulfovibrio alaskensis NCIMB 13491. FDHs are enzymes that catalyze the two-electron oxidation of formate to carbon dioxide in several aerobic and anaerobic organisms. D. alaskensis FDH is a heterodimeric protein with a molecular weight of 126±2 kDa composed of two subunits, α=93±3 kDa and β=32±2 kDa, which contains 6±1 Fe/molecule, 0.4±0.1 Mo/molecule, 0.3±0.1 W/molecule, and 1.3±0.1 guanine monophosphate nucleotides. The UV-vis absorption spectrum of D. alaskensis FDH is typical of an iron-sulfur protein with a broad band around 400 nm. Variable-temperature EPR studies performed on reduced samples of D. alaskensis FDH showed the presence of signals associated with the different paramagnetic centers of D. alaskensis FDH. Three rhombic signals having g-values and relaxation behavior characteristic of [4Fe-4S] clusters were observed in the 5–40 K temperature range. Two EPR signals with all the g-values less than two, which accounted for less than 0.1 spin/protein, typical of mononuclear Mo(V) and W(V), respectively, were observed. The signal associated with the W(V) ion has a larger deviation from the free electron g-value, as expected for tungsten in a d1 configuration, albeit with an unusual relaxation behavior. The EPR parameters of the Mo(V) signal are within the range of values typically found for the slow-type signal observed in several Mo-containing proteins belonging to the xanthine oxidase family of enzymes. Mo(V) resonances are split at temperatures below 50 K by magnetic coupling with one of the Fe/S clusters. The analysis of the inter-center magnetic interaction allowed us to assign the EPR-distinguishable iron-sulfur clusters with those seen in the crystal structure of a homologous enzyme.
Referência(s)