Can the HVL help the mechanical X-ray tube characterization?
2011; Wiley; Volume: 40; Issue: 4 Linguagem: Inglês
10.1002/xrs.1318
ISSN1097-4539
AutoresFlorbela Rêgo, L. Peralta, Maflda Gomes,
Tópico(s)Advanced Radiotherapy Techniques
ResumoX-Ray SpectrometryVolume 40, Issue 4 p. 235-239 Research Article Can the HVL help the mechanical X-ray tube characterization? Florbela Rêgo, Corresponding Author Florbela Rêgo [email protected] LIP-Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa 1000-149, PortugalLIP-Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa 1000-149, Portugal.Search for more papers by this authorLuis Peralta, Luis Peralta LIP-Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa 1000-149, Portugal Faculdade de Ciências, Universidade de Lisboa, Lisboa, PortugalSearch for more papers by this authorMaf1lda Gomes, Maf1lda Gomes LIP-Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa 1000-149, PortugalSearch for more papers by this author Florbela Rêgo, Corresponding Author Florbela Rêgo [email protected] LIP-Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa 1000-149, PortugalLIP-Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa 1000-149, Portugal.Search for more papers by this authorLuis Peralta, Luis Peralta LIP-Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa 1000-149, Portugal Faculdade de Ciências, Universidade de Lisboa, Lisboa, PortugalSearch for more papers by this authorMaf1lda Gomes, Maf1lda Gomes LIP-Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa 1000-149, PortugalSearch for more papers by this author First published: 02 May 2011 https://doi.org/10.1002/xrs.1318Citations: 2Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract High-intensity X-ray beams are usually characterized by their kVp (kilovoltage peak) value and half-value layer (HVL). While the first parameter is reasonably well known (apart from accelerating potential fluctuations), on the second, there is a greater deal of uncertainty. The HVL depends on the used filtration, the effective kVp value and on some of the X-ray tube mechanical features, such as the anode angle. This last parameter is not always provided by the tube manufacturer, so we may question if the HVL dependence on the anode angle can be used to extract information on this angle. We tried to give an answer to this question using two different numerical models and a full Monte Carlo (MC) program to simulate the photon field produced by the X-ray tube for several anode angles. One of the numerical models was developed by the Institute of Physics and Engineering in Medicine and gives X-ray spectra and HVL values for a wide range of kVp values and anode angles. The other model, named SpekCalc, is based on a theoretical work developed by Gavin Poludniowski and Phil Evans. The MC simulation was done using the PENELOPE code for coupled electron-photon transport. Using the computed photon spectra, HVLs were obtained and compared with experimental HVL values obtained with a Philips PW 2184/00 X-ray tube with a 26° tungsten anode and accelerating potentials in the range of 40–90 kVp. We are now able to show the PENELOPE simulation can deliver the correct anode angle value. Copyright © 2011 John Wiley & Sons, Ltd. References [1]E. B. Podgorsak (Technical Ed.), Radiation Oncology Physics: A Handbook for Teachers and Students, International Atomic Energy Agency, Vienna, Austria, 2005, pp. 335. [2] International Atomic Energy Agency (IAEA), Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water, IAEA TRS-398, Vienna, Austria, 2000, pp. 92. [3]C. M. Ma, C. W. Coffey, L. A. DeWerd, C. Liu, R. Nath, S. M. Seltzer, J. P. Seuntjens, Med. Phys. 2001, 28(6), 868. [4]F. H. Attix, Introduction to Radiological Physics and Radiation Dosimetry, John Willey & Sons: New York, 1986. [5]K. Cranley, B. J. Gilmore, G. W. A. Fogarty, L. Desponds, Catalogue of Diagnostic X-ray Spectra and Other Data. IPEM Report No. 78, The Institute of Physics and Engineering in Medicine: York, 1997. [6]H. E. Johns, J. R. Cunningham, The Physics of Radiology ( 4th edn), Charles C. Thomas Publisher: USA, 1983. [7]G. Poludniowski, G. Landry, F. DeBlois, P. M. Evans, F. Verhaegen, Phys. Med. Biol. 2009, 54, N433. [8]G. G. Poludniowski, P. M. Evans, Med. Phys. 2007, 34, 2164. [9]G. G. Poludniowski, Med. Phys. 2007, 34, 2175. [10] The Institute of Cancer Research Website, SpekCalc X-ray Spectrum Generator Programme, http://www.icr.ac.uk/research/research_sections/physics/3544.shtml [accessed July 2010]. [11]F. Salvat, J. M. Fernández-Varea, J. Sempau, PENELOPE–2006 A Code System for Monte Carlo Simulation of Electron and Photon Transport, OECD Nuclear Energy Agency, Issy-les-Moulineaux, France, 2006. [12] Tube Data Sheet—High Power Side Window Tubes for XRF, Philips Analytical X-ray, print no. 949870702611. [13]R. Birch, M. Marshall, Phys. Med. Biol. 1979, 24, 505. [14]J. H. Hubbell, S. M. Seltzer, Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients from 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest, National Institute of Standards and Technology, Gaithersburg, USA, http://www.nist.gov/physlab/data/xraycoef/index.cfm [accessed July 2010]. [15]J. R. Greening, Fundamentals of Radiation Dosimetry ( 2nd edn), Taylor & Francis: New York, 1985, pp. 22. [16] The National Institute of Standards and Technology Website, X-Ray Mass Attenuation Coefficients, http://physics.nist.gov/PhysRefData/XrayMassCoef/chap3.html [accessed July 2010]. [17]Stopping Powers for Electrons and Positrons ICRU, Bethesda, MD, ICRU Rep. 37, 1984. [18] The National Institute of Standards and Technology Website, X-Ray Mass Attenuation Coefficients, Table 4, Air Dry, http://www.physics.nist.gov/PhysRefData/XrayMassCoef/ComTab/air.html [accessed July 2010]. [19]M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, K. Olsen, XCOM: Photon Cross Sections Database, NIST Standard Reference Database 8 (XGAM), National Institute of Standards and Technology, Gaithersburg, USA, http://www.nist.gov/pml/data/xcom/index.cfm [accessed July 2010]. Citing Literature Volume40, Issue4July/August 2011Pages 235-239 ReferencesRelatedInformation
Referência(s)