Artigo Revisado por pares

Reduction of Collection Efficiency of Charge Carriers with Increasing Cell Size in Polymer Bulk Heterojunction Solar Cells

2010; Wiley; Volume: 21; Issue: 2 Linguagem: Inglês

10.1002/adfm.201001578

ISSN

1616-3028

Autores

Won‐Ik Jeong, Jane Lee, Sun‐Young Park, Jae‐Wook Kang, Jang‐Joo Kim,

Tópico(s)

Perovskite Materials and Applications

Resumo

Advanced Functional MaterialsVolume 21, Issue 2 p. 343-347 Full Paper Reduction of Collection Efficiency of Charge Carriers with Increasing Cell Size in Polymer Bulk Heterojunction Solar Cells Won-Ik Jeong, Won-Ik Jeong OLEDs Center, Deptartment of Materials Science and Engineering, Seoul National University, Seoul, 151–744, Republic of KoreaSearch for more papers by this authorJane Lee, Jane Lee OLEDs Center, Deptartment of Materials Science and Engineering, Seoul National University, Seoul, 151–744, Republic of KoreaSearch for more papers by this authorSun-Young Park, Sun-Young Park Department of Material Processing, Hybride Coating Group, Korea Institute of Materials Science (KIMS), 531 Changwondaero, Changwon, Gyeongnam, 641–831, Republic of KoreaSearch for more papers by this authorJae-Wook Kang, Jae-Wook Kang Department of Material Processing, Hybride Coating Group, Korea Institute of Materials Science (KIMS), 531 Changwondaero, Changwon, Gyeongnam, 641–831, Republic of KoreaSearch for more papers by this authorJang-Joo Kim, Corresponding Author Jang-Joo Kim [email protected] OLEDs Center, Deptartment of Materials Science and Engineering, Seoul National University, Seoul, 151–744, Republic of KoreaOLEDs Center, Deptartment of Materials Science and Engineering, Seoul National University, Seoul, 151–744, Republic of Korea.Search for more papers by this author Won-Ik Jeong, Won-Ik Jeong OLEDs Center, Deptartment of Materials Science and Engineering, Seoul National University, Seoul, 151–744, Republic of KoreaSearch for more papers by this authorJane Lee, Jane Lee OLEDs Center, Deptartment of Materials Science and Engineering, Seoul National University, Seoul, 151–744, Republic of KoreaSearch for more papers by this authorSun-Young Park, Sun-Young Park Department of Material Processing, Hybride Coating Group, Korea Institute of Materials Science (KIMS), 531 Changwondaero, Changwon, Gyeongnam, 641–831, Republic of KoreaSearch for more papers by this authorJae-Wook Kang, Jae-Wook Kang Department of Material Processing, Hybride Coating Group, Korea Institute of Materials Science (KIMS), 531 Changwondaero, Changwon, Gyeongnam, 641–831, Republic of KoreaSearch for more papers by this authorJang-Joo Kim, Corresponding Author Jang-Joo Kim [email protected] OLEDs Center, Deptartment of Materials Science and Engineering, Seoul National University, Seoul, 151–744, Republic of KoreaOLEDs Center, Deptartment of Materials Science and Engineering, Seoul National University, Seoul, 151–744, Republic of Korea.Search for more papers by this author First published: 09 November 2010 https://doi.org/10.1002/adfm.201001578Citations: 67Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Changes in solar cell performance related to active area size were investigated using polymer bulk heterojunction devices. Cell geometry was defined by introduction of a sub-electrode. The cells were uniform up to 16 cm2. The solar cells showed little change in performance up to a cell area of 1 cm2. As cell area increased above 4 cm2 the power conversion efficiency dropped significantly, mostly because of fill factor (FF) drop and short circuit current density (Jsc) suppression. The changes in FF and Jsc could not be described solely by a Shockley diode equation based on an equivalent circuit model unless photocurrent collection was also considered. As cell area increased, collection efficiency deviated from unity, which further reduced device performance. That deviation is attributed to acceleration of recombination loss at low built-in junction potentials. References 1 J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A. J. Heeger, Science 2007, 317, 222. 2 S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, A. J. Heeger, Nat. Photon. 2009, 3, 297. 3 G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 2005, 4, 864. 4 T.-Y. Chu, S. Alem, P. G. Verly, S. Wakim, J. Lu, Y. Tao, S. Beaupre, M. Leclerc, F. Belanger, D. Desilets, S. Rodman, D. Waller, R. Gaudiana, Appl. Phys. Lett. 2009, 95, 063304. 5 H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Nat. Photon. 2009, 3, 649. 6 Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, Adv. Mater. 2010, 22, E135. 7 N. Blouin, A. Michaud, M. Leclerc, Adv. Mater. 2007, 19, 2295. 8 D. Muhlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller, R. Gaudiana, C. Brabec, Adv. Mater. 2006, 18, 2884. 9 J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Nat. Mater. 2007, 6, 497. 10 N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletete, G. Durocher, Y. Tao, M. Leclerc, J. Am. Chem. Soc. 2008, 130, 732. 11 C.-J. Ko, Y.-K. Lin, F.-C. Chen, C.-W. Chu, Appl. Phys. Lett. 2007, 90, 063509. 12 W.-J. Yoon, P. R. Berger, Appl. Phys. Lett. 2008, 92, 013306. 13 K. M. Coakley, M. D. McGehee, Appl. Phys. Lett. 2003, 83, 3380. 14 S. K. Hau, H.-L. Yip, H. Ma, A. K.-Y. Jen, Appl. Phys. Lett. 2008, 93, 233304. 15 H.-H. Lia, L.-M. Chen, Z. Xu, G. Li, Y. Yang, Appl. Phys. Lett. 2008, 92, 173303. 16 F. Yang, M. Shtein, S. R. Forrest, Nat. Mater. 2005, 4, 37. 17 M.-S. Kim, M.-G. Kang, L. J. Guo, J. Kim, Appl. Phys. Lett. 2008, 92, 133301. 18 V. Shrotiya, G. Li, T. Yao, T. Moriarty, K. Emery Y. Yang, Adv. Funct. Mater. 2006, 16, 2016. 19 A. Cravino, P. Schilinsky, C. J. Brabec, Adv. Funct. Mater. 2007, 17, 3906. 20 D. Gupta, M. Bag, K. S. Narayan, Appl. Phys. Lett. 2008, 93, 163301. 21 G. P. Smestad, F. C. Krebs, C. M. Lampert, C. G. Granqvist, K. L. Chopra, X. Mathew, H. Takakura, Sol. Energy Mater. Sol. Cells 2008, 92, 371. 22 A. K. Pandey, J. M. Nunzi, B. Ratier, A. Moliton, Phys. Lett. A 2008, 372, 1333. 23 S. Choi, W. J. Potscavage Jr., B. Kippelen, J. Appl. Phys. 2009, 106, 054507. 24 J. D. Servaites, S. Yeganeh, T. J. Marks, M. A. Ratner, Adv. Funct. Mater. 2009, 20, 974. 25 A. L. Fahernbruch, R. H. Bube, Fundamentals of Solar Cells, Academic Press, New York, USA 1983. 26 V. D. Mihailetchi, L. J. A. Koster, J. C. Hummelen, P. W. M. Blom, Phys. Rev. Lett. 2004, 93, 216601. 27 J. Nelson, Phys. Rev. B 2003, 67, 155209. 28 S. Hegedus, D. Desai, C. Thompson, Prog. Photovolt: Res. Appl. 2007, 15, 587. 29 S. S. Hegedus, Prog. Photovolt: Res. Appl. 1997, 5, 151. 30 N. C. Wyeth, Solid-State Electron. 1977, 20, 629. 31 R. J. Handy, Solid-State Electron. 1967, 10, 765. 32 S. Deb, B. Ghosh, Sol. Cells 1984, 13, 145. 33 W. J. Lee, E. Ramasamy, D. Y. Lee, Sol. Energy Mater. Sol. Cells 2009, 93, 1448. 34 V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, M. T. Rispens, J. Appl. Phys. 2003, 94, 6849. 35 C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 374. 36 D. Cheyns, J. Poortmans, P. Heremans, C. Deibel, S. Verlaak, B. P. Rand, J. Genoe, Phys. Rev. B 2008, 77, 165332. 37 A. Rothwarf, J. Phillips, N. Wyeth, Proceedings of 13th IEEE Photovoltaic Specilists Conference, 1978, 399. 38 K. Mitchell, A. Fahrenbruch, R. Bube, J. Appl. Phys. 1977, 48, 4365. 39 M. Eron, A. Rothwarf, Appl. Phys. Lett. 1984, 44, 131–133. 40 J. Xue, S. Uchida, B. P. Rand, S. R. Forrest, Appl. Phys. Lett. 2004, 84, 3013. 41 J. A. Barker, C. M. Ramsdale, N. C. Greenham, Phys. Rev. B 2003, 67, 075205. 42 J. Yu, J. Huang, L. Zhang, Y. Jiang, J. Appl. Phys. 2009, 106, 063103. 43 V. D. Mihailetchi, L. J. A. Koster, J. C. Hummelen, P. W. M. Blom, Phys. Rev. Lett. 2004, 93, 216601. 44 V. D. Mihailetchi, H. Xie, B. de Boer, L. J. A. Koster, P. W. M. Blom, Adv. Funct. Mater. 2006, 16, 699. 45 M. Limpinsel, A. Wagenpfahl, M. Mingebach, C. Deubel, Phys. Rev. B 2010, 81, 085203. 46 P. P. Boix, G. G.–Belmonte, U. Munecas, M. Neophytou, C. Waldauf, R. Pacios, Appl. Phys. Lett. 2009, 95, 233302. Citing Literature Volume21, Issue2January 21, 2011Pages 343-347 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX