Artigo Revisado por pares

Genetic Covariation in Drosophila Life History: Untangling the Data

1984; University of Chicago Press; Volume: 123; Issue: 4 Linguagem: Inglês

10.1086/284222

ISSN

1537-5323

Autores

Michael R. Rose,

Tópico(s)

Lepidoptera: Biology and Taxonomy

Resumo

Previous articleNext article No AccessNotes and CommentsGenetic Covariation in Drosophila Life History: Untangling the DataMichael R. RoseMichael R. RosePDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by The American Naturalist Volume 123, Number 4Apr., 1984 Published for The American Society of Naturalists Article DOIhttps://doi.org/10.1086/284222 Views: 9Total views on this site Citations: 109Citations are reported from Crossref Copyright 1984 The University of ChicagoPDF download Crossref reports the following articles citing this article:Tejinder Singh Chechi, Aaditya Narasimhan, Broti Biswas, Nagaraj Guru Prasad Male mating success evolves in response to increased levels of male‐male competition, Evolution 133 (May 2022).https://doi.org/10.1111/evo.14501Theodore Garland Jr., Cynthia J. Downs, and Anthony R. Ives Trade-Offs (and Constraints) in Organismal Biology, Physiological and Biochemical Zoology 95, no.11 (Dec 2021): 82–112.https://doi.org/10.1086/717897John H. Price, Yaniv Brandvain, Kevin P. Smith Measurements of lethal and nonlethal inbreeding depression inform the de novo domestication of Silphium integrifolium, American Journal of Botany 108, no.66 (Jun 2021): 980–992.https://doi.org/10.1002/ajb2.1679Jakub Žák, Martin Reichard, Jean‐Michel Gaillard Reproductive senescence in a short‐lived fish, Journal of Animal Ecology 90, no.22 (Nov 2020): 492–502.https://doi.org/10.1111/1365-2656.13382Vítor G. Faria, Élio Sucena From Nature to the Lab: Establishing Drosophila Resources for Evolutionary Genetics, Frontiers in Ecology and Evolution 5 (Jun 2017).https://doi.org/10.3389/fevo.2017.00061Henrique Teotónio, Suzanne Estes, Patrick C Phillips, Charles F Baer Experimental Evolution with Caenorhabditis Nematodes, Genetics 206, no.22 (Jun 2017): 691–716.https://doi.org/10.1534/genetics.115.186288Kimberly A. Hughes, Jeff Leips Pleiotropy, constraint, and modularity in the evolution of life histories: insights from genomic analyses, Annals of the New York Academy of Sciences 1389, no.11 (Dec 2016): 76–91.https://doi.org/10.1111/nyas.13256T Manenti, J G Sørensen, N N Moghadam, V Loeschcke Few genetic and environmental correlations between life history and stress resistance traits affect adaptation to fluctuating thermal regimes, Heredity 117, no.33 (Jun 2016): 149–154.https://doi.org/10.1038/hdy.2016.34Vítor G. Faria, Nelson E. Martins, Tânia Paulo, Luís Teixeira, Élio Sucena, Sara Magalhães Evolution of Drosophila resistance against different pathogens and infection routes entails no detectable maintenance costs, Evolution 69, no.1111 (Oct 2015): 2799–2809.https://doi.org/10.1111/evo.12782Amy L. Angert, Sarah Kimball, Megan L. DeMarche, Travis E. Huxman, David L. Venable Phenotypic constraints and community structure: Linking trade‐offs within and among species, Evolution 68, no.1111 (Sep 2014): 3149–3165.https://doi.org/10.1111/evo.12514 References, (Oct 2014): 391–450.https://doi.org/10.1002/9781118891360.refsAna Gabriela Jimenez, Clara Cooper-Mullin, Elisabeth A. Calhoon, Joseph B. Williams Physiological underpinnings associated with differences in pace of life and metabolic rate in north temperate and neotropical birds, Journal of Comparative Physiology B 184, no.55 (Mar 2014): 545–561.https://doi.org/10.1007/s00360-014-0825-0Christopher M. Kimber, Adam K. Chippindale Mutation, Condition, and the Maintenance of Extended Lifespan in Drosophila, Current Biology 23, no.2222 (Nov 2013): 2283–2287.https://doi.org/10.1016/j.cub.2013.09.049P. Klepsatel, M. Gáliková, N. De Maio, S. Ricci, C. Schlötterer, T. Flatt Reproductive and post-reproductive life history of wild-caught Drosophila melanogaster under laboratory conditions, Journal of Evolutionary Biology 26, no.77 (May 2013): 1508–1520.https://doi.org/10.1111/jeb.12155Harri Vehviläinen, Antti Kause, Hanna Kuukka-Anttila, Heikki Koskinen, Tuija Paananen Untangling the positive genetic correlation between rainbow trout growth and survival, Evolutionary Applications 5, no.77 (Mar 2012): 732–745.https://doi.org/10.1111/j.1752-4571.2012.00251.xC. R. Archer, F. Zajitschek, S. K. Sakaluk, N. J. Royle, J. Hunt SEXUAL SELECTION AFFECTS THE EVOLUTION OF LIFESPAN AND AGEING IN THE DECORATED CRICKET GRYLLODES SIGILLATUS, Evolution 66, no.1010 (May 2012): 3088–3100.https://doi.org/10.1111/j.1558-5646.2012.01673.xVincent Careau, Olaf R. P. Bininda-Emonds, Genesis Ordonez, Theodore Garland Are Voluntary Wheel Running and Open-Field Behavior Correlated in Mice? Different Answers from Comparative and Artificial Selection Approaches, Behavior Genetics 42, no.55 (May 2012): 830–844.https://doi.org/10.1007/s10519-012-9543-0Laurence D. Mueller, Larry G. Cabral DOES PHENOTYPIC PLASTICITY FOR ADULT SIZE VERSUS FOOD LEVEL IN DROSOPHILA MELANOGASTER EVOLVE IN RESPONSE TO ADAPTATION TO DIFFERENT REARING DENSITIES?, Evolution 66, no.11 (Sep 2011): 263–271.https://doi.org/10.1111/j.1558-5646.2011.01427.xBy David Houle, Christophe Pélabon, Günter P. Wagner, and Thomas F. Hansen Measurement and Meaning in Biology David Houle, Christophe Pélabon, Günter P. Wagner, Thomas F. Hansen, The Quarterly Review of Biology 86, no.11 (Jul 2015): 3–34.https://doi.org/10.1086/658408Aziz A. Khazaeli, James W. Curtsinger LIFE HISTORY VARIATION IN AN ARTIFICIALLY SELECTED POPULATION OF DROSOPHILA MELANOGASTER: PLEIOTROPY, SUPERFLIES, AND AGE-SPECIFIC ADAPTATION, Evolution 64, no.1212 (Oct 2010): 3409–3416.https://doi.org/10.1111/j.1558-5646.2010.01139.xKimberly A. Hughes Mutation and the evolution of ageing: from biometrics to system genetics, Philosophical Transactions of the Royal Society B: Biological Sciences 365, no.15441544 (Apr 2010): 1273–1279.https://doi.org/10.1098/rstb.2009.0265Molly K. Burke, Michael R. Rose Experimental evolution with Drosophila, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 296, no.66 (Jun 2009): R1847–R1854.https://doi.org/10.1152/ajpregu.90551.2008Cecelia M. Miles, Marta L. Wayne Life history trade-offs and response to selection on egg size in the polychaete worm Hydroides elegans, Genetica 135, no.33 (May 2008): 289–298.https://doi.org/10.1007/s10709-008-9277-3D. K. DOWLING, A. A. MAKLAKOV, U. FRIBERG, F. HAILER Applying the genetic theories of ageing to the cytoplasm: cytoplasmic genetic covariation for fitness and lifespan, Journal of Evolutionary Biology 22, no.44 (Apr 2009): 818–827.https://doi.org/10.1111/j.1420-9101.2009.01692.xMichael R. Rose, Casandra L. Rauser, Gregory Benford, Margarida Matos, Laurence D. Mueller HAMILTON'S FORCES OF NATURAL SELECTION AFTER FORTY YEARS, Evolution 61, no.66 (Jun 2007): 1265–1276.https://doi.org/10.1111/j.1558-5646.2007.00120.xShailesh Kumar, Dhanya Kumar, V.S. Harish, S. Divya, Vijay Kumar Sharma Possible evidence for morning and evening oscillators in Drosophila melanogaster populations selected for early and late adult emergence, Journal of Insect Physiology 53, no.44 (Apr 2007): 332–342.https://doi.org/10.1016/j.jinsphys.2006.12.007William R Swindell, Juan L Bouzat Inbreeding Depression and Male Survivorship in Drosophila: Implications for Senescence Theory, Genetics 172, no.11 (Jan 2006): 317–327.https://doi.org/10.1534/genetics.105.045740Urban Friberg, Timothy A. Lew, Phillip G. Byrne, William R. Rice ASSESSING THE POTENTIAL FOR AN ONGOING ARMS RACE WITHIN AND BETWEEN THE SEXES: SELECTION AND HERITABLE VARIATION, Evolution 59, no.77 (Jul 2005): 1540–1551.https://doi.org/10.1111/j.0014-3820.2005.tb01803.xChristoph Vorburger POSITIVE GENETIC CORRELATIONS AMONG MAJOR LIFE-HISTORY TRAITS RELATED TO ECOLOGICAL SUCCESS IN THE APHID MYZUS PERISICAE, Evolution 59, no.55 (May 2005): 1006–1015.https://doi.org/10.1111/j.0014-3820.2005.tb01039.xChristoph Vorburger POSITIVE GENETIC CORRELATIONS AMONG MAJOR LIFE-HISTORY TRAITS RELATED TO ECOLOGICAL SUCCESS IN THE APHID MYZUS PERSICAE, Evolution 59, no.55 (Jan 2005): 1006.https://doi.org/10.1554/04-531C M Sgrò, A A Hoffmann Genetic correlations, tradeoffs and environmental variation, Heredity 93, no.33 (Jul 2004): 241–248.https://doi.org/10.1038/sj.hdy.6800532Leo S. Luckinbill Selective Breeding For Slower Aging And Greater Lifespan, (Jan 2003): 51–63.https://doi.org/10.1007/978-94-017-0283-6_4John P. Phelan, Margaret A. Archer, Kelly A. Beckman, Adam K. Chippindale, Theodore J. Nusbaum, Michael R. Rose BREAKDOWN IN CORRELATIONS DURING LABORATORY EVOLUTION. I. COMPARATIVE ANALYSES OF DROSOPHILA POPULATIONS, Evolution 57, no.33 (Jan 2003): 527.https://doi.org/10.1554/0014-3820(2003)057[0527:BICDLE]2.0.CO;2Joseph L. Graves What a tangled web he weaves, Anthropological Theory 2, no.22 (Jun 2002): 131–154.https://doi.org/10.1177/1469962002002002627Joseph L. Graves Scylla and Charybdis: Adaptationism, Reductionism, and the Fallacy of Equating Race with Disease, (Jan 2002): 143–164.https://doi.org/10.1007/978-94-010-0269-1_8Antti Kause, Irma Saloniemi, Jean-Philippe Morin, Erkki Haukioja, Sinikka Hanhimäki, Kai Ruohomäki SEASONALLY VARYING DIET QUALITY AND THE QUANTITATIVE GENETICS OF DEVELOPMENT TIME AND BODY SIZE IN BIRCH FEEDING INSECTS, Evolution 55, no.1010 (Oct 2001): 1992–2001.https://doi.org/10.1111/j.0014-3820.2001.tb01316.xRyan Sawby, Kimberly A. Hughes MALE GENOTYPE AFFECTS FEMALE LONGEVITY IN DROSOPHILA MELANOGASTER, Evolution 55, no.44 (May 2007): 834–839.https://doi.org/10.1111/j.0014-3820.2001.tb00819.xRyan Sawby, Kimberly A. Hughes , Evolution 55, no.44 ( 2001): 834.https://doi.org/10.1554/0014-3820(2001)055[0834:MGAFLI]2.0.CO;2V. Sheeba, Vijay K. Sharma, K. Shubha, M. K. Chandrashekaran, Amitabh Joshi The Effect of Different Light Regimes on Adult Lifespan in Drosophila melanogaster Is Partly Mediated through Reproductive Output, Journal of Biological Rhythms 15, no.55 (Jun 2016): 380–392.https://doi.org/10.1177/074873000129001477Margarida Matos, Carla Rego, André Levy, Henrique Teotónio, Michael R. Rose An evolutionary no man's land, Trends in Ecology & Evolution 15, no.55 (May 2000): 206.https://doi.org/10.1016/S0169-5347(00)01844-9A. Callaghan, G. J. Holloway THE RELATIONSHIP BETWEEN ENVIRONMENTAL STRESS AND VARIANCE, Ecological Applications 9, no.22 (May 1999): 456–462.https://doi.org/10.1890/1051-0761(1999)009[0456:TRBESA]2.0.CO;2J. LazareviĆ, V. PeriĆ-Mataruga, J. IvanoviĆ, M. AndjelkoviĆ Host plant effects on the genetic variation and correlations in the individual performance of the Gypsy Moth, Functional Ecology 12, no.11 (Mar 2002): 141–148.https://doi.org/10.1046/j.1365-2435.1998.00166.xJohn Guntrip, Richard M Sibly, Graham J Holloway The effect of novel environment and sex on the additive genetic variation and covariation in and between emergence body weight and development period in the cowpea weevil, Callosobruchus maculatus (Coleoptera, Bruchidae), Heredity 78, no.22 (Feb 1997): 158–165.https://doi.org/10.1038/hdy.1997.23James D. Fry, Stefanie L. Heinsohn, Trudy F. C. Mackay THE CONTRIBUTION OF NEW MUTATIONS TO GENOTYPE‐ENVIRONMENT INTERACTION FOR FITNESS IN DROSOPHILA MELANOGASTER, Evolution 50, no.66 (May 2017): 2316–2327.https://doi.org/10.1111/j.1558-5646.1996.tb03619.xYoshinari Tanaka How is life history variation generated from the genetic resource allocation?, Researches on Population Ecology 38, no.11 (Jun 1996): 11–17.https://doi.org/10.1007/BF02514966Stacey A. Duhon, Shin Murakami, Thomas E. Johnson Direct isolation of longevity mutants in the nematodeCaenorhabditis elegans, Developmental Genetics 18, no.22 (Jan 1996): 144–153.https://doi.org/10.1002/(SICI)1520-6408(1996)18:2 3.0.CO;2-9Xavier Draye, Frédéric A. Lints Geographic variations of life history strategies in Drosophila melanogaster II. Analysis of laboratory-adapted populations, Experimental Gerontology 30, no.55 (Sep 1995): 517–532.https://doi.org/10.1016/0531-5565(95)00006-3Bas Zwaan, R. Bijlsma, R. F. Hoekstra ARTIFICIAL SELECTION FOR DEVELOPMENTAL TIME IN DROSOPHILA MELANOGASTER IN RELATION TO THE EVOLUTION OF AGING: DIRECT AND CORRELATED RESPONSES, Evolution 49, no.44 (May 2017): 635–648.https://doi.org/10.1111/j.1558-5646.1995.tb02300.xKimberly A. Hughes THE EVOLUTIONARY GENETICS OF MALE LIFE-HISTORY CHARACTERS IN DROSOPHILA MELANOGASTER, Evolution 49, no.33 (May 2017): 521–537.https://doi.org/10.1111/j.1558-5646.1995.tb02284.xK. Spitze Quantitative genetics of zooplankton life histories, Experientia 51, no.55 (May 1995): 454–464.https://doi.org/10.1007/BF02143198 Caleb E. Finch , and Michael R. Rose Hormones and the Physiological Architecture of Life History Evolution, The Quarterly Review of Biology 70, no.11 (Oct 2015): 1–52.https://doi.org/10.1086/418864Amitabh Joshi, John N. Thompson Trade-offs and the evolution of host specialization, Evolutionary Ecology 9, no.11 (Jan 1995): 82–92.https://doi.org/10.1007/BF01237699Jack J Windig Genetic correlations and reaction norms in wing pattern of the tropical butterfly Bicyclus anynana, Heredity 73, no.55 (Nov 1994): 459–470.https://doi.org/10.1038/hdy.1994.144Stefan Andersson, Ruth G Shaw Phenotypic plasticity in Crepis tectorum (Asteraceae): genetic correlations across light regimens, Heredity 72, no.22 (Feb 1994): 113–125.https://doi.org/10.1038/hdy.1994.17Linda K. Dixon Use of recombinant inbred strains to map genes of aging, (Jan 1994): 168–182.https://doi.org/10.1007/978-94-017-1671-0_15Pamela O'Neil, Johanna Schmitt GENETIC CONSTRAINTS ON THE INDEPENDENT EVOLUTION OF MALE AND FEMALE REPRODUCTIVE CHARACTERS IN THE TRISTYLOUS PLANT LYTHRUM SALICARIA, Evolution 47, no.55 (May 2017): 1457–1471.https://doi.org/10.1111/j.1558-5646.1993.tb02168.xGraham J. Holloway, Peter W. de Jong, Mart Ottenheim THE GENETICS AND COST OF CHEMICAL DEFENSE IN THE TWO-SPOT LADYBIRD ( ADALIA BIPUNCTATA L.), Evolution 47, no.44 (May 2017): 1229–1239.https://doi.org/10.1111/j.1558-5646.1993.tb02149.xWilliam J. Etges GENETICS OF HOST-CACTUS RESPONSE AND LIFE-HISTORY EVOLUTION AMONG ANCESTRAL AND DERIVED POPULATIONS OF CACTOPHILIC DROSOPHILA MOJAVENSIS, Evolution 47, no.33 (May 2017): 750–767.https://doi.org/10.1111/j.1558-5646.1993.tb01231.xL. Partridge, N. H. Barton Optimally, mutation and the evolution of ageing, Nature 362, no.64186418 (Mar 1993): 305–311.https://doi.org/10.1038/362305a0Brian Charlesworth Evolutionary mechanisms of senescence, Genetica 91, no.1-31-3 (Feb 1993): 11–19.https://doi.org/10.1007/BF01435984Linda K. Dixon Use of recombinant inbred strains to map genes of aging, Genetica 91, no.1-31-3 (Feb 1993): 151–165.https://doi.org/10.1007/BF01435995James D. Fry THE "GENERAL VIGOR" PROBLEM: CAN ANTAGONISTIC PLEIOTROPY BE DETECTED WHEN GENETIC COVARIANCES ARE POSITIVE?, Evolution 47, no.11 (May 2017): 327–333.https://doi.org/10.1111/j.1558-5646.1993.tb01224.xR. H. Smith, L. A. Linton, R. M. Sibly Trade-Offs and Genetic Correlations Among Life-History Traits: Theory and Simulation, (Jan 1993): 128–144.https://doi.org/10.1007/978-3-642-48394-3_9G. Engström, L. -E. Liljedahl, T. Björklund Expression of genetic and environmental variation during ageing, Theoretical and Applied Genetics 85, no.11 (Oct 1992): 26–32.https://doi.org/10.1007/BF00223841Michael F. Antolin SEX RATIO VARIATION IN A PARASITIC WASP II. DIALLEL CROSS, Evolution 46, no.55 (May 2017): 1511–1524.https://doi.org/10.1111/j.1558-5646.1992.tb01141.xThomas R. Meagher THE QUANTITATIVE GENETICS OF SEXUAL DIMORPHISM IN SILENE LATIFOLIA (CARYOPHYLLACEAE). I. GENETIC VARIATION, Evolution 46, no.22 (May 2017): 445–457.https://doi.org/10.1111/j.1558-5646.1992.tb02050.xP. A. Parsons Evolutionary Adaptation and Stress, (Jan 1992): 191–223.https://doi.org/10.1007/978-1-4615-3336-8_5John P. Phelan Genetic variability and rodent models of human aging, Experimental Gerontology 27, no.22 (Jan 1992): 147–159.https://doi.org/10.1016/0531-5565(92)90039-3Yoshinari Tanaka Heritability estimates of life history traits in small white butterfly Pieris rapae crucivora, Population Ecology 33, no.22 (Nov 2018): 323–329.https://doi.org/10.1007/BF02513557Anne Brooks, Thomas E Johnson Genetic specification of life span and self-fertility in recombinant-inbred strains of Caenorhabditis elegans, Heredity 67, no.11 (Aug 1991): 19–28.https://doi.org/10.1038/hdy.1991.60Ken Spitze, John Burnson, Michael Lynch THE COVARIANCE STRUCTURE OF LIFE‐HISTORY CHARACTERS IN DAPHNIA PULEX, Evolution 45, no.55 (May 2017): 1081–1090.https://doi.org/10.1111/j.1558-5646.1991.tb04376.xDavid Houle GENETIC COVARIANCE OF FITNESS CORRELATES: WHAT GENETIC CORRELATIONS ARE MADE OF AND WHY IT MATTERS, Evolution 45, no.33 (May 2017): 630–648.https://doi.org/10.1111/j.1558-5646.1991.tb04334.xKen Spitze CHAOBORUS PREDATION AND LIFE‐HISTORY EVOLUTION IN DAPHNIA PULEX : TEMPORAL PATTERN OF POPULATION DIVERSITY, FITNESS, AND MEAN LIFE HISTORY, Evolution 45, no.11 (May 2017): 82–92.https://doi.org/10.1111/j.1558-5646.1991.tb05268.xR.H. Smith Genetic and Phenotypic Aspects of Life-history Evolution in Animals, (Jan 1991): 63–120.https://doi.org/10.1016/S0065-2504(08)60097-5Graham J Holloway, Susan R Povey, Richard M Sibly The effect of new environment on adapted genetic architecture, Heredity 64, no.33 (Jun 1990): 323–330.https://doi.org/10.1038/hdy.1990.40Steven P Courtney, Jeffrey J Hard Host acceptance and life-history traits in Drosophila busckii: tests of the hierarchy-threshold model, Heredity 64, no.33 (Jun 1990): 371–375.https://doi.org/10.1038/hdy.1990.46Brian Charlesworth OPTIMIZATION MODELS, QUANTITATIVE GENETICS, AND MUTATION, Evolution 44, no.33 (May 2017): 520–538.https://doi.org/10.1111/j.1558-5646.1990.tb05936.x Bernard J. Crespi Measuring the Effect of Natural Selection on Phenotypic Interaction Systems, The American Naturalist 135, no.11 (Oct 2015): 32–47.https://doi.org/10.1086/285030William E. Bradshaw The Present and Future of Insect Life-Cycle Evolution, (Jan 1990): 243–251.https://doi.org/10.1007/978-1-4471-3464-0_17Michael R. Rose, Joseph L. Graves, Edward W. Hutchinson The Use of Selection to Probe Patterns of Pleiotropy in Fitness Characters, (Jan 1990): 29–42.https://doi.org/10.1007/978-1-4471-3464-0_3Thomas E. Johnson A Developmental Genetic Approach to the Analysis of Aging Processes, (Jan 1990): 43–49.https://doi.org/10.1007/978-1-4613-0513-2_4 William E. Bradshaw , and Christina M. Holzapfel Life-Historical Consequences of Density-Dependent Selection in the Pitcher-Plant Mosquito, Wyeomyia smithii, The American Naturalist 133, no.66 (Oct 2015): 869–887.https://doi.org/10.1086/284957Samuel M. Scheiner, Roberta L. Caplan, Richard F. Lyman A search for trade-offs among life history traits inDrosophila melanogaster, Evolutionary Ecology 3, no.11 (Mar 1989): 51–63.https://doi.org/10.1007/BF02147931Donna M. Hughes, Andrew G. Clark ANALYSIS OF THE GENETIC STRUCTURE OF LIFE HISTORY OF DROSOPHILA MELANOGASTER USING RECOMBINANT EXTRACTED LINES, Evolution 42, no.66 (Jun 2017): 1309–1320.https://doi.org/10.1111/j.1558-5646.1988.tb04190.xEdwin H. Bryant, Lisa M. Meffert EFFECT OF AN EXPERIMENTAL BOTTLENECK ON MORPHOLOGICAL INTEGRATION IN THE HOUSEFLY, Evolution 42, no.44 (May 2017): 698–707.https://doi.org/10.1111/j.1558-5646.1988.tb02488.xWilliam R. RICE HERITABLE VARIATION IN FITNESS AS A PREREQUISITE FOR ADAPTIVE FEMALE CHOICE: THE EFFECT OF MUTATION‐SELECTION BALANCE, Evolution 42, no.44 (May 2017): 817–820.https://doi.org/10.1111/j.1558-5646.1988.tb02500.xTheodore Garland GENETIC BASIS OF ACTIVITY METABOLISM. I. INHERITANCE OF SPEED, STAMINA, AND ANTIPREDATOR DISPLAYS IN THE GARTER SNAKE THAMNOPHIS SIRTALIS, Evolution 42, no.22 (May 2017): 335–350.https://doi.org/10.1111/j.1558-5646.1988.tb04137.xMartin S. Obin, Robert K. Vander Meer, Lee Ehrman Sexual behaviour, (Jan 1988): 140–150.https://doi.org/10.1007/978-1-4899-2683-8_11M. Hani Soliman, Frédéric A. Lints, Cécile V. Lints, Pol Bullens Bibliography: longevity, ageing and parental age effects in Drosophila (1907–86), (Jan 1988): 241–293.https://doi.org/10.1007/978-1-4899-2683-8_19FRED GOULD Genetics of Pairwise and Multispecies Plant–Herbivore Coevolution, (Jan 1988): 13–55.https://doi.org/10.1016/B978-0-12-656855-4.50006-1Dorothy Prowell Pashley QUANTITATIVE GENETICS, DEVELOPMENT, AND PHYSIOLOGICAL ADAPTATION IN HOST STRAINS OF FALL ARMYWORM, Evolution 42, no.11 (May 2017): 93–102.https://doi.org/10.1111/j.1558-5646.1988.tb04110.xTimothy A Mousseau, Derek A Roff Natural selection and the heritability of fitness components, Heredity 59, no.22 (Oct 1987): 181–197.https://doi.org/10.1038/hdy.1987.113 Andrew G. Clark Senescence and the Genetic-Correlation Hang-Up, The American Naturalist 129, no.66 (Oct 2015): 932–940.https://doi.org/10.1086/284686Mark H Gromko Genetic constraint on the evolution of courtship behaviour in Drosophila melanogaster, Heredity 58, no.33 (Jun 1987): 435–441.https://doi.org/10.1038/hdy.1987.72 Charles E. Taylor , Amalia D. Pereda , and James A. Ferrari On the Correlation between Mating Success and Offspring Quality in Drosophila melanogaster, The American Naturalist 129, no.55 (Oct 2015): 721–729.https://doi.org/10.1086/284668Derek A Roff, Timothy A Mousseau Quantitative genetics and fitness: lessons from Drosophila, Heredity 58, no.11 (Feb 1987): 103–118.https://doi.org/10.1038/hdy.1987.15Thomas E. Johnson, David B. Friedman, Paul A. Fitzpatrick, William L. Conley Mutant Genes That Extend Life Span, (Jan 1987): 91–100.https://doi.org/10.1007/978-1-4613-1939-9_6M. R. Rose, P. M. Service, E. W. Hutchinson Three Approaches to Trade-Offs in Life-History Evolution, (Jan 1987): 91–105.https://doi.org/10.1007/978-3-642-72770-2_6 James T. Giesel Genetic Correlation Structure of Life History Variables in Outbred, Wild Drosophila melanogaster: Effects of Photoperiod Regimen, The American Naturalist 128, no.44 (Oct 2015): 593–603.https://doi.org/10.1086/284590 Deborah Ann Roach Life History Variation in Geranium carolinianum. 1. Covariation between Characters at Different Stages of the Life Cycle, The American Naturalist 128, no.11 (Oct 2015): 47–57.https://doi.org/10.1086/284538 Thomas Mitchell-Olds , and J. J. Rutledge Quantitative Genetics in Natural Plant Populations: A Review of the Theory, The American Naturalist 127, no.33 (Oct 2015): 379–402.https://doi.org/10.1086/284490Trudy F. C. Mackay A quantitative genetic analysis of fitness and its components in Drosophila melanogaster, Genetical Research 47, no.11 (Apr 2009): 59–70.https://doi.org/10.1017/S0016672300024526R. Arking, M. Clare Genetics of Aging: Effective Selection for Increased Longevity in Drosophila, (Jan 1986): 217–236.https://doi.org/10.1007/978-3-642-70853-4_17L. Partridge Sexual Activity and Life Span, (Jan 1986): 45–54.https://doi.org/10.1007/978-3-642-70853-4_4Thomas Mitchell‐Olds QUANTITATIVE GENETICS OF SURVIVAL AND GROWTH IN IMPATIENS CAPENSIS, Evolution 40, no.11 (May 2017): 107–116.https://doi.org/10.1111/j.1558-5646.1986.tb05722.xLinda Partridge, Trudy F. C. Mackay, Susan Aitken Male mating success and fertility in Drosophila melanogaster, Genetical Research 46, no.33 (Apr 2009): 279–285.https://doi.org/10.1017/S0016672300022783 P. M. Service , E. W. Hutchinson , M. D. MacKinley , and M. R. Rose Resistance to Environmental Stress in Drosophila melanogaster Selected for Postponed Senescence, Physiological Zoology 58, no.44 (Sep 2015): 380–389.https://doi.org/10.1086/physzool.58.4.30156013Philip M. Service, Michael R. Rose GENETIC COVARIATION AMONG LIFE-HISTORY COMPONENTS: THE EFFECT OF NOVEL ENVIRONMENTS, Evolution 39, no.44 (May 2017): 943–945.https://doi.org/10.1111/j.1558-5646.1985.tb00436.xLaurence D. Mueller The Evolutionary Ecology of Drosophila, (Jan 1985): 37–98.https://doi.org/10.1007/978-1-4615-6980-0_2

Referência(s)
Altmetric
PlumX