Artigo Acesso aberto Revisado por pares

Identification of Drosophila melanogaster yellow-f and yellow-f2 proteins as dopachrome-conversion enzymes

2002; Portland Press; Volume: 368; Issue: 1 Linguagem: Inglês

10.1042/bj20020272

ISSN

1470-8728

Autores

Qian Han, Jianmin Fang, Haizhen Ding, Jody Johnson, Bruce M. Christensen, Jianyong Li,

Tópico(s)

Insect and Arachnid Ecology and Behavior

Resumo

This study describes the identification of Drosophila yellow-f and yellow-f2 as dopachrome-conversion enzymes responsible for catalysing the conversion of dopachrome into 5,6-dihydroxyindole in the melanization pathway. Drosophilayellow-y gene and yellow-b, -c, -f and -f2 genes were expressed in an insect cell/baculovirus expression system and their corresponding recombinant proteins were screened for dopachrome-conversion enzyme activity. Among the yellow and yellow-related genes, the yellow-f and yellow-f2 genes were identified as the genes coding for Drosophila dopachrome-conversion enzyme based on the high activity of their recombinant proteins in catalysing the production of 5,6-dihydroxyindole from dopachrome. Both yellow-f and yellow-f2 are capable of mediating a decarboxylative structural rearrangement of dopachrome, as well as an isomerization/tautomerization of dopamine chrome and dopa methyl ester chrome. Northern hybridization revealed the transcription of yellow-f in larvae and pupae, but a high abundance of mRNA was observed in later larval and early pupal stages. In contrast, yellow-f2 transcripts were present at all stages, but high abundance of its mRNA was observed in later-stage pupae and adults. These data indicate that yellow-f and yellow-f2 complement each other during Drosophila development and that the yellow-f is involved in larval and pupal melanization, and yellow-f2 plays a major role in melanization reactions in Drosophila during later pupal and adult development. Results from this study provide the groundwork towards a better understanding of the physiological roles of the Drosophilayellow gene family.

Referência(s)