Artigo Revisado por pares

Electrocatalytic Oxidation of Formate by [Ni(P R 2 N R′ 2 ) 2 (CH 3 CN)] 2+ Complexes

2011; American Chemical Society; Volume: 133; Issue: 32 Linguagem: Inglês

10.1021/ja204489e

ISSN

1943-2984

Autores

Brandon R. Galan, J. Schoffel, John C. Linehan, Candace S. Seu, Aaron M. Appel, John A. S. Roberts, Monte L. Helm, U.J. Kilgore, Jenny Y. Yang, Daniel L. DuBois, Clifford P. Kubiak,

Tópico(s)

Advanced battery technologies research

Resumo

[Ni(P(R)(2)N(R')(2))(2)(CH(3)CN)](2+) complexes with R = Ph, R' = 4-MeOPh or R = Cy, R' = Ph , and a mixed-ligand [Ni(P(R)(2)N(R')(2))(P(R''(2))N(R'(2)))(CH(3)CN)](2+) with R = Cy, R' = Ph, R'' = Ph, have been synthesized and characterized by single-crystal X-ray crystallography. These and previously reported complexes are shown to be electrocatalysts for the oxidation of formate in solution to produce CO(2), protons, and electrons, with rates that are first-order in catalyst and formate at formate concentrations below ∼0.04 M (34 equiv). At concentrations above ∼0.06 M formate (52 equiv), catalytic rates become nearly independent of formate concentration. For the catalysts studied, maximum observed turnover frequencies vary from <1.1 to 15.8 s(-1) at room temperature, which are the highest rates yet reported for formate oxidation by homogeneous catalysts. These catalysts are the only base-metal electrocatalysts as well as the only homogeneous electrocatalysts reported to date for the oxidation of formate. An acetate complex demonstrating an η(1)-OC(O)CH(3) binding mode to nickel has also been synthesized and characterized by single-crystal X-ray crystallography. Based on this structure and the electrochemical and spectroscopic data, a mechanistic scheme for electrocatalytic formate oxidation is proposed which involves formate binding followed by a rate-limiting proton and two-electron transfer step accompanied by CO(2) liberation. The pendant amines have been demonstrated to be essential for electrocatalysis, as no activity toward formate oxidation was observed for the similar [Ni(depe)(2)](2+) (depe = 1,2-bis(diethylphosphino)ethane) complex.

Referência(s)