Artigo Acesso aberto Revisado por pares

On the Asymptotics of Constrained $M$-Estimation

1994; Institute of Mathematical Statistics; Volume: 22; Issue: 4 Linguagem: Inglês

10.1214/aos/1176325768

ISSN

2168-8966

Autores

Charles J. Geyer,

Tópico(s)

Control Systems and Identification

Resumo

Limit theorems for an $M$-estimate constrained to lie in a closed subset of $\mathbb{R}^d$ are given under two different sets of regularity conditions. A consistent sequence of global optimizers converges under Chernoff regularity of the parameter set. A $\sqrt n$-consistent sequence of local optimizers converges under Clarke regularity of the parameter set. In either case the asymptotic distribution is a projection of a normal random vector on the tangent cone of the parameter set at the true parameter value. Limit theorems for the optimal value are also obtained, agreeing with Chernoff's result in the case of maximum likelihood with global optimizers.

Referência(s)
Altmetric
PlumX