On kernel-perfect orientations of line graphs
1998; Elsevier BV; Volume: 191; Issue: 1-3 Linguagem: Inglês
10.1016/s0012-365x(98)00091-0
ISSN1872-681X
AutoresO. V. Borodin, Alexandr Kostochka, Douglas R. Woodall,
Tópico(s)Limits and Structures in Graph Theory
ResumoWe exploit the technique of Galvin (1995) to prove that an orientation D of a line-graph G (of a multigraph) is kernel-perfect if and only if every oriented odd cycle in D has a chord (or pseudochord) and every clique has a kernel.
Referência(s)