Artigo Revisado por pares

Mittlere Approximation mit linear unabhängigen Funktionen

1955; Wiley; Volume: 35; Issue: 5 Linguagem: Alemão

10.1002/zamm.19550350502

ISSN

1521-4001

Autores

Theodor Kaluza,

Tópico(s)

Engineering and Materials Science Studies

Resumo

Abstract Eine willkürliche Funktion (wF) soll durch ein Polynom (P) aus n linear unabhängigen Funktionen (F) im Mittel möglichst gut approximiert werden. Unter gewissen Integrationsvoraussetzungen gibt es genau eine Lösung. Die Fehlerformel verallgemeinert die Besselsche Ungleichung. Die Elemente gewisser Matrizen (EM) sind maßgebend für die Gewinnung der Koeffizienten von P ( K P ). für die Bildung und Normierung eines Orthogonalsystems (OS), für eine Integraldarstellung der KP, für die Darstellung der F durch das OS, für die änderung der KP und des Fehlers bei wachsendem n und für den Zusammenhang mit einer evtl. gleichmäßigen Entwicklung der wF nach den F. Die EM genügen einer Rekursionsformel.

Referência(s)