Artigo Acesso aberto Revisado por pares

ELF-Miner: using structural knowledge and data mining methods to detect new (Linux) malicious executables

2011; Springer Science+Business Media; Volume: 30; Issue: 3 Linguagem: Inglês

10.1007/s10115-011-0393-5

ISSN

0219-1377

Autores

Farrukh Shahzad, Muddassar Farooq,

Tópico(s)

Software Testing and Debugging Techniques

Resumo

Linux malware can pose a significant threat—its (Linux) penetration is exponentially increasing—because little is known or understood about Linux OS vulnerabilities. We believe that now is the right time to devise non-signature based zero-day (previously unknown) malware detection strategies before Linux intruders take us by surprise. Therefore, in this paper, we first do a forensic analysis of Linux executable and linkable format (ELF) files. Our forensic analysis provides insight into different features that have the potential to discriminate malicious executables from benign ones. As a result, we can select a features’ set of 383 features that are extracted from an ELF headers. We quantify the classification potential of features using information gain and then remove redundant features by employing preprocessing filters. Finally, we do an extensive evaluation among classical rule-based machine learning classifiers—RIPPER, PART, C4.5 Rules, and decision tree J48—and bio-inspired classifiers—cAnt Miner, UCS, XCS, and GAssist—to select the best classifier for our system. We have evaluated our approach on an available collection of 709 Linux malware samples from vx heavens and offensive computing. Our experiments show that ELF-Miner provides more than 99% detection accuracy with less than 0.1% false alarm rate.

Referência(s)