The Problem of the Normal Hydrogen Molecule in the New Quantum Mechanics

1928; American Institute of Physics; Volume: 31; Issue: 4 Linguagem: Inglês

10.1103/physrev.31.579

ISSN

1536-6065

Autores

S. C. Wang,

Tópico(s)

Quantum Mechanics and Applications

Resumo

The solution of Schroedinger's equation for the normal hydrogen molecule is approximated by the function $C[{e}^{\ensuremath{-}\frac{z({r}_{1}+{p}_{2})}{a}}+{e}^{\ensuremath{-}\frac{z({r}_{2}+{p}_{1})}{a}}]$ where $a=\frac{{h}^{2}}{4{\ensuremath{\pi}}^{2}m{e}^{2}}$, ${r}_{1}$ and ${p}_{1}$ are the distances of one of the electrons to the two nuclei, and ${r}_{2}$ and ${p}_{2}$ those for the other electron. The value of $Z$ is so determined as to give a minimum value to the variational integral which generates Schroedinger's wave equation. This minimum value of the integral gives the approximate energy $E$. For every nuclear separation $D$, there is a $Z$ which gives the best approximation and a corresponding $E$. We thus obtain an approximate energy curve as a function of the separation. The minimum of this curve gives the following data for the configuration corresponding to the normal hydrogen molecule: the heat of dissociation = 3.76 volts, the moment of inertia ${J}_{0}=4.59\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}41}$ gr. ${\mathrm{cm}}^{2}$, the nuclear vibrational frequency ${\ensuremath{\nu}}_{0}=4900$ ${\mathrm{cm}}^{\ensuremath{-}1}$.

Referência(s)
Altmetric
PlumX