A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock
2014; American Institute of Physics; Volume: 85; Issue: 9 Linguagem: Inglês
10.1063/1.4896043
ISSN1527-2400
AutoresBruno François, Claudio Calosso, Jean-Marie Danet, Rodolphe Boudot,
Tópico(s)Advanced Frequency and Time Standards
ResumoWe report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be −42, −100, −117 dB rad2/Hz and −129 dB rad2/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10−14 at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.
Referência(s)