Synthesesteuerung mit DNA-Templaten: vielseitiger als erwartet
2002; Wiley; Volume: 114; Issue: 1 Linguagem: Alemão
10.1002/1521-3757(20020104)114
ISSN1521-3757
AutoresDaniel Summerer, Andreas Marx,
Tópico(s)Chemical Synthesis and Analysis
ResumoAngewandte ChemieVolume 114, Issue 1 p. 93-95 Highlight Synthesesteuerung mit DNA-Templaten: vielseitiger als erwartet Daniel Summerer Dipl.-Chem., Daniel Summerer Dipl.-Chem. Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Str. 1, 53121 Bonn (Deutschland) Fax: (+49) 228-73-5388Search for more papers by this authorAndreas Marx Dr., Andreas Marx Dr. [email protected] Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Str. 1, 53121 Bonn (Deutschland) Fax: (+49) 228-73-5388Search for more papers by this author Daniel Summerer Dipl.-Chem., Daniel Summerer Dipl.-Chem. Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Str. 1, 53121 Bonn (Deutschland) Fax: (+49) 228-73-5388Search for more papers by this authorAndreas Marx Dr., Andreas Marx Dr. [email protected] Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Str. 1, 53121 Bonn (Deutschland) Fax: (+49) 228-73-5388Search for more papers by this author First published: 04 January 2002 https://doi.org/10.1002/1521-3757(20020104)114:1 3.0.CO;2-SCitations: 25Read the full textAboutPDF ToolsRequest permissionAdd to favorites ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Nucleinsäuren steuern chemische Reaktionen. Neueste Beispiele von Synthesen mit DNA-Templaten weisen darauf hin, dass DNA zahlreiche chemische Reaktionen sequenzspezifisch und distanzunabhängig steuern kann. References 1 Neuere Übersichten: Google Scholar 1a D. M. J. Lilly, ChemBioChem 2001, 2, 31–35; 10.1002/1439-7633(20010105)2:1 3.0.CO;2-P CASPubMedWeb of Science®Google Scholar 1b A. Jäschke, B. Seelig, Curr. Opin. Chem. Biol. 2000, 4, 257–262; 10.1016/S1367-5931(00)00086-7 CASPubMedWeb of Science®Google Scholar 1c E. A. Doherty, J. A. Doudna, Annu. Rev. Biochem. 2000, 69, 597–615; 10.1146/annurev.biochem.69.1.597 CASPubMedWeb of Science®Google Scholar 1d M. Famulok, A. Jenne, Top. Curr. Chem. 1999, 202, 101–131; 10.1007/3-540-48990-8_4 CASWeb of Science®Google Scholar 1e C. Carola, F. Eckstein, Curr. Opin. Chem. Biol. 1999, 3, 274–283. 10.1016/S1367-5931(99)80043-X CASPubMedWeb of Science®Google Scholar 2 Aspekte der supramolekularen DNA-vermittelten Synthese sind kürzlich dargestellt worden und werden daher in dieser Kurzübersicht nicht behandelt. Siehe zum Beispiel: Google Scholar 2a C. M. Niemeyer, Angew. Chem. 2001, 113, 4254–4287; 10.1002/1521-3757(20011119)113:22 3.0.CO;2-D Google ScholarAngew. Chem. Int. Ed. 2001, 40, 4128–4158; 10.1002/1521-3773(20011119)40:22 3.0.CO;2-S CASPubMedWeb of Science®Google Scholar 2b C. M. Niemeyer, Chem. Eur. J. 2001, 7, 3189–3195; 10.1002/1521-3765(20010803)7:15 3.0.CO;2-C Web of Science®Google Scholar 2c N. C. Seeman, Synlett 2000, 1536–1548; CASWeb of Science®Google Scholar 2d C. M. Niemeyer, Curr. Opin. Chem. Biol. 2000, 4, 609–618. 10.1016/S1367-5931(00)00140-X CASPubMedWeb of Science®Google Scholar 3 Ausgewählte Beispiele und Übersichten: Google Scholar 3a J. Ye, Y. Gat, D. G. Lynn, Angew. Chem. 2000, 112, 3787–3789; 10.1002/1521-3757(20001016)112:20 3.0.CO;2-I Web of Science®Google ScholarAngew. Chem. Int. Ed. 2000, 39, 3641–3643; 10.1002/1521-3773(20001016)39:20 3.0.CO;2-J CASPubMedWeb of Science®Google Scholar 3b Y. Gat, D. G. Lynn in Templated Organic Synthesis ( ), Wiley-VCH, Weinheim 1999, S. 133–157; Google Scholar 3c A. Luther, R. Brandsch, G. von Kiedrowski, Nature 1998, 396, 245–248; 10.1038/24343 CASPubMedWeb of Science®Google Scholar 3d I. A. Kozlov, B. D. Bouvere, A. V. Aerschot, P. Herdewijn, L. E. Orgel, J. Am. Chem. Soc. 1999, 121, 5856–5859; 10.1021/ja990440u CASPubMedWeb of Science®Google Scholar 3e R. K. Bruick, P. E. Dawson, S. B. H. Kent, N. Usman, G. F. Joyce, Chem. Biol. 1996, 3, 49–56; 10.1016/S1074-5521(96)90084-8 CASPubMedWeb of Science®Google Scholar 3f E. Orgel, Acc. Chem. Res. 1995, 28, 109–118; 10.1021/ar00051a004 CASPubMedWeb of Science®Google Scholar 3g M. K. Herrlein, J. S. Nelson, R. L. Letsinger, J. Am. Chem. Soc. 1995, 117, 10 151–10 152. 10.1021/ja00145a042 CASWeb of Science®Google Scholar 4 Google Scholar 4a Y. Xu, N. B. Karalkar, E. T. Kool, Nat. Biotechnol. 2001, 19, 148–152; 10.1038/84414 CASPubMedWeb of Science®Google Scholar 4b Y. Xu, E. T. Kool, J. Am. Chem. Soc. 2000, 122, 9040–9041. 10.1021/ja994019h CASWeb of Science®Google Scholar 5 A. Mattes, O. Seitz, Angew. Chem. 2001, 113, 3277–3280; 10.1002/1521-3757(20010903)113:17 3.0.CO;2-O Google ScholarAngew. Chem. Int. Ed. 2001, 40, 3178–3181. 10.1002/1521-3773(20010903)40:17 3.0.CO;2-M CASPubMedWeb of Science®Google Scholar 6 K. Fujimoto, S. Matsuda, N. Takahashi, I. Saito, J. Am. Chem. Soc. 2000, 122, 5646–5647. 10.1021/ja993698t CASWeb of Science®Google Scholar 7 J. L. Czlapinski, T. L. Sheppard, J. Am. Chem. Soc. 2001, 123, 8618–8619. 10.1021/ja0162212 CASPubMedWeb of Science®Google Scholar 8 Z. J. Gartner, D. R. Liu, J. Am. Chem. Soc. 2001, 123, 6961–6963. 10.1021/ja015873n CASPubMedWeb of Science®Google Scholar Citing Literature Volume114, Issue1January 4, 2002Pages 93-95 This is the German version of Angewandte Chemie. Note for articles published since 1962: Do not cite this version alone. Take me to the International Edition version with citable page numbers, DOI, and citation export. We apologize for the inconvenience. ReferencesRelatedInformation
Referência(s)