Artigo Acesso aberto Revisado por pares

Methods for Prediction of High-Speed Reacting Flows in Aerospace Propulsion

2014; American Institute of Aeronautics and Astronautics; Volume: 52; Issue: 3 Linguagem: Inglês

10.2514/1.j052283

ISSN

1533-385X

Autores

J. Philip Drummond,

Tópico(s)

Fluid Dynamics and Turbulent Flows

Resumo

No AccessSurvey PaperMethods for Prediction of High-Speed Reacting Flows in Aerospace PropulsionJ. Philip DrummondJ. Philip DrummondNASA Langley Research Center, Hampton, Virginia 23681Published Online:18 Feb 2014https://doi.org/10.2514/1.J052283SectionsView Full TextPDFPDF Plus ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Billig F. S., "Research on Supersonic Combustion," Journal of Propulsion and Power, Vol. 9, No. 4, 1993, pp. 499–514. doi:https://doi.org/10.2514/3.23652 JPPOEL 0748-4658 LinkGoogle Scholar[2] Curran E. T., "Scramjet Engines: The First Forty Years," Journal of Propulsion and Power, Vol. 17, No. 6, 2001, pp. 1138–1148. doi:https://doi.org/10.2514/2.5875 JPPOEL 0748-4658 LinkGoogle Scholar[3] Hallion R. P., "The History of Hypersonics: Or, "Back to the Future—Again and Again"," AIAA Paper 2005-0329, 2005. Google Scholar[4] Ferri A., "Possible Directions of Future Research in Air Breathing Engines," Proceedings of the Fourth AGARD Colloquium, Pergamon, New York, 1961. Google Scholar[5] Dugger D. L., "Comparison of Hypersonic Ramjet Engines with Subsonic and Supersonic Combustion," Proceedings of the Fourth AGARD Colloquium, Pergamon, New York, 1961. Google Scholar[6] Weber R. J. and MacKay J. S., "Analysis of Ramjet Engines Using Supersonic Combustion," NACA TN-4386, 1958. Google Scholar[7] Northam G. B. and Anderson G. Y., "Linear Stability Analysis of Density Stratified Parallel Shear Flows," AIAA Paper 1986-0159, 1986. Google Scholar[8] White M. E., Drummond J. P. and Kumar A., "Evolution and Application of CFD Techniques for Scramjet Engine Applications," Journal of Propulsion and Power, Vol. 3, No. 5, 1987, pp. 423–439. doi:https://doi.org/10.2514/3.23007 JPPOEL 0748-4658 LinkGoogle Scholar[9] Waltrup P. J. and Billig F. S., "Liquid Fueled Supersonic Combustion Ramjets; A Research Perspective of the Past, Present, and Future," AIAA Paper 1986-0158, 1986. Google Scholar[10] Billig F. S., Waltrup P. J. and Stockbridge R. D., "Integral-Rocket Dual-Combustion Ramjets; A New Propulsion Concept," Journal of Spacecraft and Rockets, Vol. 17, No. 5, 1980, pp. 416–424. doi:https://doi.org/10.2514/3.57760 JSCRAG 0022-4650 LinkGoogle Scholar[11] Ferri A., "Mixing Controlled Supersonic Combustion," Annual Review of Fluid Mechanics, Vol. 5, 1973, pp. 301–338. doi:https://doi.org/10.1146/annurev.fl.05.010173.001505 ARVFA3 0066-4189 CrossrefGoogle Scholar[12] Moretti G., "Analysis of Two-Dimensional Problems of Supersonic Combustion Controlled by Mixing," AIAA Paper 1964-96, 1964. LinkGoogle Scholar[13] Edelman R. and Weilerstein G., "A Solution of the Inviscid-Viscid Equations with Applications to Bounded and Unbounded Multicomponent Reacting Flows," AIAA Paper 1969-0083, 1969. LinkGoogle Scholar[14] Dash S. M., "An Analysis of Internal Supersonic Flows with Diffusion, Dissipation, and Hydrogen-Air Combustion," NASA CR-111783, 1970. Google Scholar[15] Dash S. M. and DelGuidice P. D., "Analysis of Supersonic Combustion Flowfields with Embedded Subsonic Regions," NASA CR-112223, 1972. Google Scholar[16] Elghobashi S. E. and Spalding D. B., "Equilibrium Chemical Reaction of Supersonic Hydrogen-Air Jets," NASA CR-2725, 1977. Google Scholar[17] Spalding D. B., Launder B. E., Morse A. P. and Maples G., "Combustion of Hydrogen-Air Jets in Local Chemical Equilibrium," NASA CR-2407, 1974. Google Scholar[18] Markatos N. C., Spalding D. B. and Tatchell D. G., "Combustion of Hydrogen Injected into a Supersonic Airstream," NASA CR-2802, 1977. Google Scholar[19] Patankar S. V. and Spalding D. B., "Calculation Procedure for Heat, Mass, and Momentum Transfer in Three-Dimensional Parabolic Flows," International Journal of Heat and Mass Transfer, Vol. 15, No. 10, 1972, pp. 1787–1806. doi:https://doi.org/10.1016/0017-9310(72)90054-3 IJHMAK 0017-9310 CrossrefGoogle Scholar[20] Evans J. S. and Schexnayder C. J., "Critical Influence of Finite Rate Chemistry and Unmixedness on Ignition and Combustion of Supersonic H2-Air Streams," AIAA Paper 1979-0355, 1979. LinkGoogle Scholar[21] Dash S. M., Sinha N. and York B. J., "Implicit/Explicit Analysis of Interactive Phenomena in Supersonic Chemically Reacting Mixing and Boundary Layer Problems," AIAA Paper 1985-1717, 1985. LinkGoogle Scholar[22] MacCormack R. W., "The Effect of Viscosity in Hypervelocity Impact Catering," AIAA Paper 1969-0354, 1969. Google Scholar[23] Briley W. R. and McDonald H., "Solution to the Multi-Dimensional Compressible Navier–Stokes Equations by a Generalized Implicit Method," Journal of Computational Physics, Vol. 24, No. 4, 1977, pp. 372–397. doi:https://doi.org/10.1016/0021-9991(77)90029-8 JCTPAH 0021-9991 CrossrefGoogle Scholar[24] Beam R. and Warming R. F., "An Implicit Factored Scheme for the Compressible Navier–Stokes Equations," AIAA Journal, Vol. 16, No. 4, 1978, pp. 393–402. doi:https://doi.org/10.2514/3.60901 AIAJAH 0001-1452 LinkGoogle Scholar[25] Drummond J. P., "Numerical Solution for Perpendicular Sonic Hydrogen Injection into a Ducted Supersonic Airstream," AIAA Journal, Vol. 17, No. 5, 1979, pp. 531–533. doi:https://doi.org/10.2514/3.61168 AIAJAH 0001-1452 LinkGoogle Scholar[26] Drummond J. P., "Numerical Investigation of the Perpendicular Injector Flow Field in a Hydrogen Fueled Scramjet," AIAA Paper 1979-1482, 1979. LinkGoogle Scholar[27] Drummond J. P. and Weidner E. H., "Numerical Study of a Scramjet Engine Flow Field," AIAA Journal, Vol. 20, No. 9, 1982, pp. 1182–1187. doi:https://doi.org/10.2514/3.51178 AIAJAH 0001-1452 LinkGoogle Scholar[28] Drummond J. P. and Weidner E. H., "A Numerical Study of Candidate Transverse Fuel Injector Configurations in the Langley Scramjet Engine," Proceedings of the 17th JANNAF Combustion Meeting, Chemical Propulsion Information Agency, Laurel, MD, 1980. Google Scholar[29] Weidner E. H. and Drummond J. P., "Numerical Study of Staged Fuel Injection for Supersonic Combustion," AIAA Journal, Vol. 20, No. 10, 1982, pp. 1426–1431. doi:https://doi.org/10.2514/3.51202 AIAJAH 0001-1452 LinkGoogle Scholar[30] Schetz J. A., Billig F. S. and Favin S., "Flowfield Analysis of a Scramjet Combustor with a Coaxial Fuel Jet," AIAA Journal, Vol. 20, No. 9, 1982, pp. 1268–1274. doi:https://doi.org/10.2514/3.51187 AIAJAH 0001-1452 LinkGoogle Scholar[31] Schetz J. A., "Turbulent Mixing of a Jet in a Co-Flowing Stream," AIAA Journal, Vol. 6, No. 10, 1968, pp. 2008–2010. doi:https://doi.org/10.2514/3.4916 AIAJAH 0001-1452 LinkGoogle Scholar[32] Schetz J. A., Billig F. S. and Favin S., "Analysis of Mixing and Combustion in a Scramjet Combustor with a Coaxial Fuel Jet," AIAA Paper 1980-1256, 1980. Google Scholar[33] Griffin M. D., Billig F. S. and White M. E., "Applications of Computational Techniques in the Design of Ramjet Engines," 6th International Symposium on Air Breathing Engines, AIAA, New York, 1983, pp. 215–228. Google Scholar[34] Walthrup P. P., Anderson G. Y. and Stull F. D., "Supersonic Combustion Ramjet (Scramjet) Engine Development in the United States," 3rd International Symposium on Air Breathing Engines, Munich, Germany, 1976, pp. 835–861. Google Scholar[35] Jenkins D. R., Landis T. and Miller J., "American X-Vehicles—An Inventory—X-1 to X-50," NASP SP-4531, 2003. Google Scholar[36] Drummond J. P., Rogers R. C. and Hussaini M. Y., "A Detailed Numerical Model of a Supersonic Reacting Mixing Layer," AIAA Paper 1986-1427, 1986. LinkGoogle Scholar[37] Carpenter M. H. and Kamath H., "Three-Dimensional Extensions to the SPARK Combustion Code," NASP CP-5029, 1988. Google Scholar[38] Carpenter M. H., "A Generalized Chemistry Version of SPARK," NASA CR-4196, 1988. Google Scholar[39] Chitsomboon T. and Northam G. B., "A 3-D PNS Computer Code for the Calculation of Supersonic Combusting Flows," AIAA Paper 1988-0438, 1988. LinkGoogle Scholar[40] Chitsomboon T., "Numerical Study of Hydrogen-Air Supersonic Combustion by Using Elliptic and Parabolized Equations," Ph.D. Thesis, Department of Mechanical Engineering, Old Dominion Univ., Norfolk, VA, 1986. Google Scholar[41] Chitsomboon T., Kumar A. and Tiwari S. N., "Numerical Study of Finite-Rate Supersonic Combustion Using Parabolized Equations," AIAA Paper 1987-0088, 1987. LinkGoogle Scholar[42] Korte J. J. and McRae D. S., "Explicit Upwind Algorithm for the Parabolized Navier–Stokes Equations," AIAA Paper 1988-0716, 1988. LinkGoogle Scholar[43] White J. A., Korte J. J. and Gaffney R. L., "Flux-Difference Split Parabolized Navier–Stokes Algorithm for Nonequilibrium Chemically Reacting Flows," AIAA Paper 1993-0534, 1993. Google Scholar[44] Guilda T. and McRae D., "An Accurate, Stable, Explicit, Parabolized Navier–Stokes Solver for High Speed Flows," AIAA Paper 1986-1116, 1986. LinkGoogle Scholar[45] Gielda T. P., Hunter L. G. and Chawner J. R., "Efficient Parabolized Navier–Stokes Solutions of Three-Dimensional, Chemically Reacting Scramjet Flow Fields," AIAA Paper 1988-0096, 1988. Google Scholar[46] Boris J. P., A Fluid Transport Algorithm that Works. Computing as a Language of Physics, International Atomic Energy Agency, Vienna, Austria, 1971, pp. 171–189. Google Scholar[47] Boris J. P., "Flux-Corrected Transport I: SHASTA—A Fluid Transport Algorithm that Works," Journal of Computational Physics, Vol. 11, No. 1, 1973, pp. 38–69. doi:https://doi.org/10.1016/0021-9991(73)90147-2 JCTPAH 0021-9991 CrossrefGoogle Scholar[48] Oran E. S., Numerical Simulation of Reactive Flow, Elsevier, New York, 1987, pp. 264–298. Google Scholar[49] Zalesak S. T., "Fully Multidimensional Flux-Corrected Transport Algorithms for Fluids," Journal of Computational Physics, Vol. 31, No. 3, 1979, pp. 335–362. doi:https://doi.org/10.1016/0021-9991(79)90051-2 JCTPAH 0021-9991 CrossrefGoogle Scholar[50] Oran E. S. and Boris J. P., Numerical Simulation of Reactive Flow, Cambridge Univ. Press, New York, 2001, pp. 246–267. Google Scholar[51] MacCormack R. W., "Current Status of Numerical Solutions of the Navier–Stokes Equations," AIAA Paper 1985-0032, 1985. LinkGoogle Scholar[52] Steger J. L., "Flux Vector Splitting of the Inviscid Gasdynamic Equations with Applications to Finite-Difference Methods," Journal of Computational Physics, Vol. 40, No. 2, 1981, pp. 263–293. doi:https://doi.org/10.1016/0021-9991(81)90210-2 JCTPAH 0021-9991 CrossrefGoogle Scholar[53] Candler G. V. and MacCormack R. W., "Hypersonic Flow Past 3-D Configurations," AIAA Paper 1987-0480, 1987. LinkGoogle Scholar[54] Candler G. V. and MacCormack R. W., "The Computation of Hypersonic Ionized Flows in Chemical and Thermal Nonequilibrium," AIAA Paper 1988-0511, 1988. Google Scholar[55] Grossman B. and Walters R. W., "The Computation of Hypersonic Ionized Flows in Chemical and Thermal Nonequilibrium," AIAA Paper 1987-1117, 1987. Google Scholar[56] van Leer B., "Flux-Vector Splitting for the Euler Equations," Lecture Notes in Physics, Vol. 170, 1982, pp. 507–512. doi:https://doi.org/10.1007/3-540-11948-5_66 LNPHA4 0075-8450 CrossrefGoogle Scholar[57] Roe P. L., "Characteristic-Based Schemes for the Euler Equations," Annual Review of Fluid Mechanics, Vol. 18, 1986, pp. 337–365. LNPHA4 0075-8450 CrossrefGoogle Scholar[58] Anderson W. K., Thomas J. L. and van Leer B., "A Comparison of Finite-Volume Flux Vector Splittings for the Euler Equations," AIAA Paper 1985-0122, 1985. LinkGoogle Scholar[59] Walters R. W. and Dwoyer D. L., "An Efficient Iteration Strategy Based on Upwind/Relaxation Schemes for the Euler Equations," AIAA Paper 1985-1529-CP, 1985. Google Scholar[60] Grossman B. and Cinnella P., "The Development of Flux-Split Algorithms for Flows with Nonequilibrium Thermodynamics and Chemical Reactions," AIAA Paper 1988-3596, 1988. Google Scholar[61] Grossman B. and Cinnella P., "Flux-Split Algorithms for Flows with Nonequilibrium Chemistry and Vibrational Relaxation," Journal of Computational Physics, Vol. 88, 1990, pp. 131–168. CrossrefGoogle Scholar[62] Liou M. S., van Leer B. and Shuen J. S., "Splitting of Inviscid Fluxes for Real Gases," Journal of Computational Physics, Vol. 87, 1990, pp. 1–24. doi:https://doi.org/10.1016/0021-9991(90)90222-M JCTPAH 0021-9991 CrossrefGoogle Scholar[63] Liou M. S., "A Generalized Procedure for Constructing an Upwind-Based TVD Scheme," AIAA Paper 1987-0355, 1987. LinkGoogle Scholar[64] Yee H. C., "Construction of Explicit and Implicit Symmetric TVD Schemes and Their Applications," Journal of Computational Physics, Vol. 68, No. 1, 1987, pp. 151–179. doi:https://doi.org/10.1016/0021-9991(87)90049-0 JCTPAH 0021-9991 CrossrefGoogle Scholar[65] Yee H. C. and Shinn J. L., "Semi-Implicit and Fully Implicit Shock Capturing Methods for Hyperbolic Conservation Laws with Stiff Source Terms," AIAA Paper 1987-1116-CP, 1987. LinkGoogle Scholar[66] Yee H. C., "Upwind and Symmetric Shock-Capturing Schemes," NASA TM-89464, 1987. Google Scholar[67] Gnoffo P. A., McCandless R. S. and Yee H. C., "Enhancements to Program LAURA for Computation of Three-Dimensional Hypersonic Flow," AIAA Paper 1987-0280, 1987. LinkGoogle Scholar[68] Gnoffo P. A. and Green F. A., "A Computational Study of the Flow Field Surrounding the Aeroassist Flight Experiment Vehicle," AIAA Paper 1987-1575, 1987. Google Scholar[69] Gnoffo P. A., Gupta R. N. and Shinn J. L., "Conservation Equations and Physical Models for Hypersonic Air Flows in Thermal and Chemical Nonequilibrium," NASA TP-2867, 1988. Google Scholar[70] Shuen J. S. and Yoon S., "Numerical Study of Chemically Reacting Flows Using an LU Scheme," AIAA Paper 1988-0436, 1988. LinkGoogle Scholar[71] Lee J., "An Analysis of Supersonic Flows with Low-Reynolds Number Compressible Two-Equation Turbulence Models Using LU Finite Volume Implicit Numerical Techniques," AIAA Paper 1994-0193, 1994. LinkGoogle Scholar[72] Lee J., "An Application of Two-Equation Models of Turbulence to Three-Dimensional Chemically Reacting Flows," AIAA Paper 1995-0734, 1995. LinkGoogle Scholar[73] Shuen J. S. and Yoon S., "Three-Dimensional Simulation of an Underexpanding Jet Interacting with a Supersonic Cross Flow," AIAA Paper 1988-3181, 1988. Google Scholar[74] Abarbanel S. and Kumar A., "Compact High Order Schemes for the Euler Equations," NASA CR-181625, 1988. CrossrefGoogle Scholar[75] Hussaini M. Y., Salas M. D. and Zang T. A., "Spectral Methods for Inviscid, Compressible Flows," Advances in Computational Transonics, edited by Habashi W. G., Pineridge, Swansea, U.K., 1985, pp. 875–912. Google Scholar[76] Gottlieb D. and Orszag S. A., "Numerical Analysis of Spectral Methods, Theory, and Applications," CBMS-NSF Regional Conference Series in Applied Mathematics, Capital City Press, Montpelier, Vermont, 1977. Google Scholar[77] Drummond J. P., Hussaini M. Y. and Zang T. A., "Spectral Methods for Modeling Supersonic Chemically Reacting Flowfields," AIAA Journal, Vol. 24, No. 9, 1986, pp. 1461–1467. doi:https://doi.org/10.2514/3.9466 AIAJAH 0001-1452 LinkGoogle Scholar[78] Drummond J. P., "Two-Dimensional Numerical Simulation of a Supersonic, Chemically Reacting Mixing Layer," NASA TM-4055, 1988. Google Scholar[79] McClinton C. R. and Hicks J. W., "NASA Scramjet Flights to Breathe New Life into Hypersonics," Aerospace America, Vol. 35, No. 7, 1997, pp. 40–46. AEAME2 0740-722X Google Scholar[80] Rausch V. L., McClinton C. R. and Crawford J. L., "Hyper-X: Flight Validation of Hypersonic Airbreathing Technology," 13th International Symposium on Air Breathing Engines, International Society for Air Breathing Engines (ISABE), Chattanooga, TN, ISABE Paper 97-7024, 1997. Google Scholar[81] Saad Y. and Schultz M., "GMRES: A Generalized Minimum Residual Algorithm for Solving Nonsymmetric Linear Systems," SIAM Journal of Scientific and Statistical Computing, Vol. 7, No. 3, 1986, pp. 856–869. CrossrefGoogle Scholar[82] "GASP Users Manual," TR-3, Aerosoft, Blacksburg, VA, 1996. Google Scholar[83] Huebner L. D. and Tatum K. E., "CFD Code Calibration and Inlet-Fairing Effects on a 3D Hypersonic Powered-Simulation Model," AIAA Paper 1993-3041, 1993. LinkGoogle Scholar[84] Huebner L. D. and Tatum K. E., "Computational and Experimental Aftbody Flow Fields for Hypersonic, Airbreathing Configurations with Scramjet Exhaust Flow Simulation," AIAA Paper 1991-1709, 1991. LinkGoogle Scholar[85] Srinivasan S., Bittner R. and Bobskill G., "Summary of GASP Code Application and Evaluation Effort for Scramjet Combustor Flowfields," AIAA Paper 1993-1973, 1993. LinkGoogle Scholar[86] Kumar A., Gnoffo P. A., Moss J. N. and Drummond J. P., "Advances in Computational Capabilities for Hypersonic Flows," AGARD Proceedings on Future Aerospace Technology in Service to the Alliance, AGARD Paper C-13, 1997. Google Scholar[87] Spalart P. and Allmaras S., "A One-Equation Turbulence Model for Aerodynamic Flows," AIAA Paper 1992-0439, 1992. LinkGoogle Scholar[88] Wilcox D. W., "Wall Matching, A Rational Alternative to Wall Functions," AIAA Paper 1989-0611, 1989. LinkGoogle Scholar[89] Menter F. R., "Zonal Two Equation k-ω Models for Aerodynamic Flows," AIAA Paper 1993-2906, 1993. Google Scholar[90] Menter F. R., "Improved Two-Equation k-ω Turbulence Models for Aerodynamic Flows," NASA TM-103975, 1992. Google Scholar[91] Abid R., "Evaluation of Two-Equation Turbulence Models for Predicting Transitional Flows," International Journal of Engineering Science, Vol. 31, No. 6, 1993, pp. 831–840. doi:https://doi.org/10.1016/0020-7225(93)90096-D IJESAN 0020-7225 CrossrefGoogle Scholar[92] Abid R., Morrison J. H., Gatski T. B. and Speziale C. G., "Prediction of Complex Aerodynamic Flows with Explicit Algebraic Stress Models," AIAA Paper 1996-0565, 1996. LinkGoogle Scholar[93] Adumitroaie V., Colucci P., Taulbee D. and Givi P., "LES, DNS, and RANS for the Analysis of High-Speed Turbulent Reacting Flows," NASA Rept. NAG-1-1122, 1994. Google Scholar[94] Girimaji S. S., "Assumed Beta-pdf Model for Turbulent Mixing: Validation and Extension to Multiple Scalar Mixing," Combustion Science and Technology, Vol. 78, 1991, pp. 177–196. doi:https://doi.org/10.1080/00102209108951748 CBSTB9 0010-2202 CrossrefGoogle Scholar[95] Gaffney R. L., White J. A., Girimaji S. S. and Drummond J. P., "Modeling Temperature and Species Fluctuations in Turbulent, Reacting Flow," Computer Systems Science and Engineering, Vol. 5, No. 2, 1994, pp. 117–133. doi:https://doi.org/10.1016/0956-0521(94)90044-2 CSSEEI 0267-6192 CrossrefGoogle Scholar[96] Srinivasan S., "Numerical Simulation of Turbulent Flow Past a Flat Plate," NASA Langley Research Center, HNAG Rept. 95-2-057, 1995. Google Scholar[97] Baurle R. A., Fuller R. P., White J. A., Chen T. H., Gruber M. R. and Nejad A. S., "An Investigation of Advanced Fuel Injection Schemes for Scramjet Combustion," AIAA Paper 1998-0937, 1998. LinkGoogle Scholar[98] White J. A. and Morrison J. H., "A Pseudo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier–Stokes Equations," AIAA Paper 1999-3360, 1999. LinkGoogle Scholar[99] van Leer B., "Toward the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov's Method," Journal of Computational Physics, Vol. 32, No. 1, 1979, pp. 101–136. doi:https://doi.org/10.1016/0021-9991(79)90145-1 CrossrefGoogle Scholar[100] Edwards J. R., "A Low Diffusion Flux-Splitting Scheme for Navier–Stokes Calculations," Computers and Fluids Journal, Vol. 26, No. 6, 1997, pp. 635–659. doi:https://doi.org/10.1016/S0045-7930(97)00014-5 0045-7930 CrossrefGoogle Scholar[101] Litton D. K., Edwards J. R. and White J. A., "Algorithmic Enhancements to the VULCAN Navier–Stokes Solver," AIAA Paper 2003-3979, 2003. LinkGoogle Scholar[102] Baurle R. A., "Modeling of High Speed Reacting Flows: Established Practices and Future Challenges," AIAA Paper 2004-0267, 2004. Google Scholar[103] Baurle R. A., Tam C. J., Edwards J. R. and Hassan H. A., "Hybrid Simulation Approach for Cavity Flows: Blending, Algorithm, and Boundary Treatment Issues," AIAA Journal, Vol. 41, No. 8, 2003, pp. 1463–1480. doi:https://doi.org/10.2514/2.2129 AIAJAH 0001-1452 LinkGoogle Scholar[104] Batten P., Goldberg U. and Chakravarthy S., "Sub-Grid Turbulence Modeling for Unsteady Flow with Acoustic Resonance," AIAA Paper 2000-0473, 2000. LinkGoogle Scholar[105] Batten P., Goldberg U. and Chakravarthy S., "LNS—An Approach Towards Embedded LES," AIAA Paper 2002-0427, 2002. LinkGoogle Scholar[106] Spalart P. R., Jou W.-H., Strelets M. and Allmaras S. R., "Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach," Advances in DNS/LES: Proceedings of the First Air Force Office of Scientific Research International Conference on DNS/LES, Greyden Press, Columbus, OH, 1997, pp. 137–148. Google Scholar[107] Strelets M., "Detached Eddy Simulation of Massively Separated Flows," AIAA Paper 2001-0879, 2001. LinkGoogle Scholar[108] Baurle R. A., Tam C. J., Edwards J. R. and Hassan H. A., "An Assessment of Boundary Treatment and Algorithm Issues on Hybrid RANS/LES Solution Strategies," AIAA Paper 2001-2562, 2001. LinkGoogle Scholar[109] Baurle R. A. and Edwards J. R., "Hybrid Reynolds-Averaged/Large-Eddy Simulations of a Coaxial Supersonic Free-Jet Experiment," AIAA Paper 2009-0129, 2009. Google Scholar[110] Baurle R. A. and Edwards J. R., "Hybrid Reynolds-Averaged/Large-Eddy Simulations of a Coaxial Supersonic Freejet Experiment," AIAA Journal, Vol. 48, No. 3, 2010, pp. 551–571. doi:https://doi.org/10.2514/1.43771 AIAJAH 0001-1452 LinkGoogle Scholar[111] Fan T. C., Tian M., Edwards J. R., Hassan H. A. and Baurle R. A., "Validation of a Hybrid Reynolds-Averaged/Large-Eddy Simulation Method for Simulating Cavity Flameholder Configurations," AIAA Paper 2001-2929, 2001. LinkGoogle Scholar[112] Fan T. C., Xiao X., Edwards J. R., Hassan H. A. and Baurle R. A., "Hybrid LES/RANS Simulation of a Shock Wave/Boundary Layer Interaction," AIAA Paper 2002-0431, 2002. LinkGoogle Scholar[113] Xiao X., Edwards J. R. and Hassan H. A., "Inflow Boundary Conditions for Hybrid Large Eddy/Reynolds Averaged Navier–Stokes Simulations," AIAA Journal, Vol. 41, No. 8, 2003, pp. 2179–2193. doi:https://doi.org/10.2514/2.2130 AIAJAH 0001-1452 LinkGoogle Scholar[114] Fan C. C., Xiao X., Edwards J. R. and Hassan H. A., "Hybrid Large-Eddy/Reynolds-Averaged Navier–Stokes Simulations of Shock-Separated Flows," Journal of Spacecraft and Rockets, Vol. 41, No. 6, 2004, pp. 2179–2193. doi:https://doi.org/10.2514/1.3735 JSCRAG 0022-4650 LinkGoogle Scholar[115] Choi J. I., Edwards J. R. and Baurle R. A., "Compressible Boundary Layer Predictions at High Reynolds Number Using Hybrid LES/RANS Methods," AIAA Journal, Vol. 47, No. 9, 2009, pp. 2179–2193. doi:https://doi.org/10.2514/1.41598 AIAJAH 0001-1452 LinkGoogle Scholar[116] Boles J. A., Choi J. I., Edwards J. R. and Baurle R. A., "Simulations of High-Speed Internal Flows Using LES/RANS Models," AIAA Paper 2009-1324, 2009. LinkGoogle Scholar[117] Boles J. A., Edwards J. R. and Baurle R. A., "Large-Eddy/Reynolds-Averaged Navier–Stokes Simulations of Sonic Injection into Mach 2 Crossflow," AIAA Journal, Vol. 48, No. 7, 2010, pp. 1444–1456. doi:https://doi.org/10.2514/1.J050066 AIAJAH 0001-1452 LinkGoogle Scholar[118] Gieseking D. A., Choi J. I., Edwards J. R. and Hassan A. H., "Simulation of Shock/Boundary Layer Interactions Using Improved LES/RANS Models," AIAA Paper 2010-0111, 2010. LinkGoogle Scholar[119] Edwards J. R., Boles J. A. and Baurle R. A., "LES/RANS Simulation of a Supersonic Reacting Wall Jet," AIAA Paper 2010-0370, 2010. LinkGoogle Scholar[120] Gieseking D. A. and Edwards J. R., "Simulations of a Mach 3 Compression-Ramp Interaction Using LES/RANS Models," AIAA Paper 2011-0726, 2011. LinkGoogle Scholar[121] Ziberter I. A. and Edwards J. R., "LES/RANS Simulations of High-Speed Mixing Processes," AIAA Paper 2011-3423, 2011. Google Scholar[122] Peterson D. M., Candler G. V. and Drayna T. W., "Detached Eddy Simulation of a Generic Scramjet Inlet and Combustor," AIAA Paper 2009-0130, 2009. Google Scholar[123] Peterson D. M. and Candler G. V., "Hybrid Reynolds-Averaged and Large-Eddy Simulation of Normal Injection into a Supersonic Crossflow," AIAA Journal, Vol. 26, No. 3, 2010, pp. 533–544. AIAJAH 0001-1452 Google Scholar[124] Peterson D. M. and Candler G. V., "Supersonic Combustor Fuel Injection Simulations Using a Hybrid RANS/LES Approach," AIAA Paper 2010-0411, 2010. LinkGoogle Scholar[125] Barnhardt M. and Candler G. V., "CFD Analysis of CUBRC Base Flow Experiments," AIAA Paper 2010-1250, 2010. LinkGoogle Scholar[126] Tylczak E. B., Peterson D. M. and Candler G. V., "Hybrid RANS/LES Simulation of Transverse Jet in Supersonic Crossflow with Laser Energy Deposition," AIAA Paper 2010-4856, 2010. LinkGoogle Scholar[127] Peterson D. M. and Candler G. V., "Simulations of Mixing for Normal and Low-Angled Injection into Supersonic Crossflow," AIAA Journal, Vol. 49, No. 12, 2011, pp. 2792–2804. doi:https://doi.org/10.2514/1.J051193 AIAJAH 0001-1452 LinkGoogle Scholar[128] Peterson D. M., Tylczak E. B. and Candler G. V., "Hybrid Reynolds-Averaged and Large-Eddy Simulation of Scramjet Fuel Injection," AIAA Paper 2011-2344, 2011. LinkGoogle Scholar[129] Tylczak E. B., Peterson D. M. and Candler G. V., "Hybrid RANS/LES Simulation of Injection and Mixing in the CUBRC Combustion Duct," AIAA Paper 2011-3216, 2011. LinkGoogle Scholar[130] Cutler A. D., Diskin G. S., Drummond J. P. and White J. A., "Supersonic Coaxial Jet Experiment for Computational Fluid Dynamics Code Validation," AIAA Journal, Vol. 44, No. 3, 2006, pp. 585–592. doi:https://doi.org/10.2514/1.5781 AIAJAH 0001-1452 LinkGoogle Scholar[131] Clifton C. W. and Cutler A. D., "A Supersonic Argon/Air Coaxial Jet Experiment for Computational Fluid Dynamics Code Validation," NASA CR-214866, 2007. Google Scholar[132] Miles R. B., Grinstead J., Kohl R. H. and Diskin G. S., "The RELIEF Flow Tagging Technique and Its Application in Engine Testing Facilities and for Helium—Air Mixing Studies," Measurement Science and Technology, Vol. 11, No. 9, 2000, pp. 1272–1281. doi:https://doi.org/10.1088/0957-0233/11/9/304 MSTCEP 0957-0233 CrossrefGoogle Scholar[133] Bush R. H., Power G. D. and Towne C. E., "WIND: The Production Flow Solver of the NPARC Alliance," AIAA Paper 1998-0935, 1998. CrossrefGoogle Scholar[134] Georgiadis N. J., Yoder D. A. and DeBonis J. R., "A Comparison of Three Navier–Stokes Solvers for Exhaust Nozzle Flowfields," AIAA Paper 1999-0748, 1999. LinkGoogle Scholar[135] Nelson C. C. and Power G. D., "CHSSI Project CFD-7: The NPARC Alliance Flow Simulation System," AIAA Paper 2001-0594, 2001. Google Scholar[136] MacLean M. and Holden M., "Validation and Comparison of WIND and DPLR Results for Hypersonic, Laminar Problems," AIAA Paper 2004-0529, 2004. LinkGoogle Scholar[137] Nelson C. C., "An Overview of the NPARC Alliance's WIND-US Flow Solver," AIAA Paper 2010-0027, 2010. LinkGoogle Scholar[138] Toro E. F., Spruce M. and Speares W., "Restoration of the Contact Surface in the HLL-Riemann Solver," Shock Waves, Vol. 4, No. 1, 1994, pp. 25–34. doi:https://doi.org/10.1007/BF01414629 CrossrefGoogle Scholar[139] Einfeldt B., "On Godunov-Type Methods for Gas Dynamics," SIAM Journal of Numerical Analysis, Vol. 25, No. 2, 1988, pp. 294–318. doi:https://doi.org/10.1137/0725021 CrossrefGoogle Scholar[140] Rusanov V. V., "Calculation of lnteraction of Non-Steady Shock Waves with Obstacles," Journal of Computation in Mathematics and Physics USSR, Vol. 1, 1961, pp. 261–279. Google Scholar[141] MacCormack R. W., "lnteractive Modified Approximate Factorization," Computers and Fluids, Vol. 30, Nos. 7–8, 2001, pp. 917–925. CrossrefGoogle Scholar[142] Pope S. B., "PDF Methods for Turbulent Reactive Flows," Progress in Energy and Combustion Science, Vol. 11, No. 2, 1985, pp. 119–192. doi:https://doi.org/10.1016/0360-1285(85)90002-4 PECSDO 0360-1285 CrossrefGoogle Scholar[143] Pope S. B., "PDF Methods for Combustion in High-Speed Turbulent Flows," NASA CR-199357, 1995. Google Scholar[144] Welton W. C. and Pope S. B., "A PDF-Based Particle Method for Compressible Turbulent Flows," AIAA Paper 1995-0804, 1995. LinkGoogle Scholar[145] Delarue B. J. and Pope S. B., "Application of PDF Methods to Compressible Turbulent Flows," Physics of Fluids A, Vol. 9, No. 9, 1997, pp. 2704–2715. doi:https://doi.org/10.1063/1.869382 PFADEB 0899-8213 CrossrefGoogle Scholar[146] Delarue B. J. and Pope S. B., "Calculations of Subsonic and Supersonic Turbulent Reacting Mixing Layers Using Probability Density Function Methods," Physics of Fluids, Vol. 10, No. 2, 1998, pp. 487–498. doi:https://doi.org/10.1063/1.869536 CrossrefGoogle Scholar[147] Hsu A. T., Tsai Y. L. P. and Raju M. S., "A PDF Approach for Compressible Turbulent Reacting Flows," AIAA Paper 1993-0087, 1993. LinkGoogle Scholar[148] Hsu A. T. and Raju M. S., "Application of a PDF Method to Compressible Turbulent Reacting Flows," AIAA Paper 1994-0781, 1994. Google Scholar[149] Norris A. T. and Hsu A. T., "Comparison of PDF and Moment Closure Methods in the Modeling of Turbulent Reacting Flows," AIAA Paper 1994-3356, 1994. LinkGoogle Scholar[150] Baurle R. A. and Girimaji S. S., "An Assumed PDF Turbulence-Chemistry Closure with Temperature-Composition Correlations," AIAA Paper 1999-0928, 1999. LinkGoogle Scholar[151] Kerstein A. R., "A Linear Eddy Model of Turbulent Scalar Transport and Mixing," Combustion Science and Technology, Vol. 60, Nos. 4–6, 1988, pp. 391–421. doi:https://doi.org/10.1080/00102208808923995 CBSTB9 0010-2202 CrossrefGoogle Scholar[152] Kerstein A. R., "One-Dimensional Turbulence: Model Formulation and Application to Homogeneous Turbulence, Shear Flows, and Buoyant Stratified Flows," Journal of Fluid Mechanics, Vol. 392, Aug. 1999, pp. 277–334. doi:https://doi.org/10.1017/S0022112099005376 JFLSA7 0022-1120 CrossrefGoogle Scholar[153] Nik M. B., Mohebbi M., Sheikhi M. R. H. and Givi P., "Progress in Large Eddy Simulation of High-Speed Turbulent Mixing and Reaction," AIAA Paper 2009-0133, 2009. LinkGoogle Scholar[154] Givi P., "Filtered Density Function for Subgrid Scale Modeling of Turbulent Combustion," AIAA Journal, Vol. 44, No. 1, 2006, pp. 16–23. doi:https://doi.org/10.2514/1.15514 AIAJAH 0001-1452 LinkGoogle Scholar[155] Poinsot T. and Veynante D., Theoretical and Numerical Combustion, 2nd ed., Edwards, Philadelphia, PA, 2000. Google Scholar[156] Ansari N., Jaberi F. A., Sheikhi M. R. H. and Givi P., "Filtered Density Function as a Modern CFD Tool," Engineering Applications of Computational Fluid Dynamics, edited by Al-Baghdadi M. A. R. S., Vol. 1, International Energy and Environment Foundation, Al-Najaf, Iraq, 2011, pp. 1–22. Google Scholar[157] Drozda T. G., Sheikhi M. R. H., Madnia C. K. and Givi P., "Developments in Formulation and Application of the Filtered Density Function," Flow, Turbulence and Combustion, Vol. 78, No. 1, 2007, pp. 35–67. doi:https://doi.org/10.1007/s10494-006-9052-4 FTCOF9 1386-6184 CrossrefGoogle Scholar[158] Givi P., "Model Free Simulations of Turbulent Reacting Flows," Progress in Energy and Combustion Science, Vol. 15, No. 1, 1989, pp. 1–107. doi:https://doi.org/10.1016/0360-1285(89)90006-3 PECSDO 0360-1285 CrossrefGoogle Scholar[159] Pope S. B., "Computations of Turbulent Combustion: Progress and Challenges," Proceedings of the Combustion Institute, Vol. 23, 1990, pp. 591–612. Google Scholar[160] Givi P., Sheikhi M. R. J., Drozda T. G. and Madnia C. K., "Invited Review: Reliable and Affordable Simulation of Turbulent Combustion," AIAA Paper 2007-0190, 2007. Google Scholar[161] Yilmaz S. L., Nik M. B., Givi P. and Strakey P. A., "Scalar Filtered Density Function for Large Eddy Simulation of a Bunsen Burner," Journal of Propulsion and Power, Vol. 26, No. 1, 2010, pp. 84–93. doi:https://doi.org/10.2514/1.44600 JPPOEL 0748-4658 LinkGoogle Scholar[162] Nik M. B., Yilmaz S. L., Givi P., Sheikhi M. R. H. and Pope S. B., "Simulation of Sandia Flame D Using Velocity-Scalar Filtered Density Function," AIAA Journal, Vol. 48, No. 7, 2010, pp. 1513–1522. doi:https://doi.org/10.2514/1.J050154 AIAJAH 0001-1452 LinkGoogle Scholar[163] Ansari N., Goldin G. M., Pisciuneri P. H., Nik M. B., Strakey P. A. and Givi P., "FDF Simulation of Swirling Reacting Flows on Unstructured Meshes," AIAA Paper 2011-0109, 2011. LinkGoogle Scholar[164] Sheikhi M. R. H., Givi P. and Pope S. B., "Velocity-Scalar Filtered Mass Density Function for Large Eddy Simulation of Turbulent Reacting Flows," Physics of Fluids, Vol. 19, No. 9, 2007, pp. 1–21. doi:https://doi.org/10.1063/1.2768953 1070-6631 CrossrefGoogle Scholar[165] Sheikhi M. R. H., Givi P. and Pope S. B., "Frequency-Velocity-Scalar Filtered Mass Density Function for Large Eddy Simulation of Turbulent Flows," Physics of Fluids, Vol. 21, No. 7, 2009, pp. 1–14. doi:https://doi.org/10.1063/1.3153907 1070-6631 CrossrefGoogle Scholar[166] Yilmaz S. L., Ansari N., Pisciuneri P. H., Nik M. B., Otis C. C. and Givi P., "Advances in FDF Modeling and Simulation," AIAA Paper 2011-5918, 2011. LinkGoogle Scholar[167] Banaeizadeh A., Li Z. and Jaberi F. A., "Compressible Scalar Filtered Mass Density Function Model for High-Speed Turbulent Flows," AIAA Journal, Vol. 49, No. 10, 2011, pp. 2130–2143. doi:https://doi.org/10.2514/1.J050779 AIAJAH 0001-1452 LinkGoogle Scholar[168] Banaeizadeh A., Li Z. and Jaberi F. A., "Large-Eddy Simulations of Compressible Turbulent Reacting Flows," AIAA Paper 2010-0202, 2010. Google Scholar[169] Jaberi F. A., "Large-Eddy Simulation of Turbulent Premixed Flames via Filtered Mass Density Function," AIAA Paper 1999-0199, 1999. LinkGoogle Scholar[170] Asghar A., Jaberi F. A. and Shih T. I. P., "LES/FMDF of Turbulent Combustion in Complex Flow Systems," AIAA Paper 2007-1414, 2007. Google Scholar[171] Banaeizadeh A., Li Z. and Jaberi F. A., "Large-Eddy Simulation of Turbulent Combustion via Filtered Mass Density Function," AIAA Paper 2011-5745, 2011. Google Scholar[172] Afshari A. and Jaberi F. A., "Large-Eddy Simulations of Turbulent Flows in an Axisymmetric Dump Combustor," AIAA Journal, Vol. 49, No. 10, 2011, pp. 2130–2143. AIAJAH 0001-1452 LinkGoogle Scholar[173] Yu J., Luo L. S. and Girimaji S. S., "Scalar Mixing and Chemical Reaction Simulations Using Lattice Boltzmann Method," International Journal of Computational Engineering Science, Vol. 3, No. 1, 2002, pp. 73–78. doi:https://doi.org/10.1142/S1465876302000551 1465-8763 CrossrefGoogle Scholar[174] Gould R. D., Stevenson W. H. and Thompson H. D., "Investigation of Turbulent Transport in an Axisymmetric Sudden Expansion," AIAA Journal, Vol. 28, No. 2, 1990, pp. 276–283. doi:https://doi.org/10.2514/3.10385 AIAJAH 0001-1452 LinkGoogle Scholar[175] Gould R. D., Stevenson W. H. and Thompson H. D., "Simultaneous Velocity and Temperature Measurements in a Premixed Dump Combustor," Journal of Propulsion and Power, Vol. 10, No. 5, 1995, pp. 639–645. doi:https://doi.org/10.2514/3.23774 JPPOEL 0748-4658 LinkGoogle Scholar Next article

Referência(s)