Revisão Acesso aberto Revisado por pares

Adaptation of Microorganisms to Cold Temperatures, Weak Acid Preservatives, Low pH, and Osmotic Stress: A Review

2004; Wiley; Volume: 3; Issue: 1 Linguagem: Inglês

10.1111/j.1541-4337.2004.tb00057.x

ISSN

1541-4337

Autores

Nikki Beales,

Tópico(s)

Salmonella and Campylobacter epidemiology

Resumo

Comprehensive Reviews in Food Science and Food SafetyVolume 3, Issue 1 p. 1-20 Adaptation of Microorganisms to Cold Temperatures, Weak Acid Preservatives, Low pH, and Osmotic Stress: A Review N. Beales, N. Beales Author Beales is with the Microbiology Department, Campden & Chorleywood Food Research Association (CCFRA), Chipping Campden, Gloucester. GL55 6LD, U.K.Search for more papers by this author N. Beales, N. Beales Author Beales is with the Microbiology Department, Campden & Chorleywood Food Research Association (CCFRA), Chipping Campden, Gloucester. GL55 6LD, U.K.Search for more papers by this author First published: 20 November 2006 https://doi.org/10.1111/j.1541-4337.2004.tb00057.xCitations: 484 Direct inquiries to author Beales (E-mail: [email protected]). AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References Abbas CA, Card GL. 1980. The relationships between growth temperature, fatty acid composition and the physical state and fluidity of membrane lipids in Yersinia enterocolitica. Biochim Biophys Acta 602: 469–76. Abee T, Wouters JA. 1999. Microbial stress response in minimal processing. Int J Food Microbiol 50: 5–91. Abbiss JS. 1983. Injury and resuscitation of microbes with reference to food microbiology. J Food Sci Tech 7: 69–81. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. 1994. The membrane structure. In: Molecular biology of the cell. 3rd ed. London : Garland Publishing Inc. p 477–506. Amezega MR, Davidson I, McLaggan D, Verheyul A, Abee T, Booth I. 1995. The role of peptide metabolism in the growth of Listeria monocytogenes ATCC 23074 at high osmolarity. Microbiology 141: 41–9. Anand S, Prasad R. 1989. Rise in intracellular pH is concurrent with 'start' progression of Saccharomyces cerevisiae. J Gen Microbiol 135: 2173–9. Anderson PA, Kaasen I, Styrvold O, Boulnois G, Strom AR. 1988. Molecular cloning, physical mapping and expression of bet genes governing the osmoregulatory choline-glycinebetaine pathway of Escherichia coli. J Gen Microbiol 134: 1737–46. Angelidis AS, Smith GM. 2003a. Three transporters mediate uptake of glycine betaine and carnitine by Listeria monocytogenes in response to hyperosmotic stress. Appl Environ Microbiol 69(2): 1013–22. Angelidis AS, Smith GM. 2003b. Role of glycine betaine and carnitine transporters in adaptation of Listeria monocytogenes to chill stress in defined medium. Appl Environ Microbiol 69(12): 7492–8. Annous BA, Becker LA, Bayles DO, Labeda DP, Wilkinson BJ. 1997. Critical role of anteiso-C15: 0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl Environ Microbiol 63(10): 3887–94. Bae HY, Miller J. 1992. Identification of two proline transport systems in Staphylococcus aureus and their possible roles in osmoregulation. Appl Environ Microbiol 58: 471–5. Baik HS, Bearson S, Dunbar S, Foster JW. 1996. The acid tolerance response of Salmonella typhimurium provides protection against organic acids. Microbiology 142: 3195–200. Baleiras-Couto MM, Huis-In't-Veld JHJ. 1995. Influence of ethanol and temperature on the cellular fatty acid composition of Zygosaccharomyces bailii spoilage yeasts. J Appl Bact 78(3): 327–33. Baxter RM, Gibbons NE. 1962. Observations on the physiology of psychrophilism in a yeast. Can J Microbiol 8: 115–7. Bayles DO, Bassam AA, Wilkinson BJ. 1996. Cold stress proteins induced in Listeria monocytogenes in response to temperature down shock and growth at low temperatures. Appl Environ Microbiol 62(3): 1116–9. Beales N, Ogburn E, Betts GD. 2001. Extending microbial lag time: the potential to increase product shelf life. Gloucestershire , U. K. : Campden & Chorleywood Food Research Association. R&D Report nr 136. Bearson S, Bearson B, Foster JW. 1997. Acid stress responses in enterobacteria. FEMS Microbiol Lett 147: 173–80. Berry ED. 1996. Cold shock proteins and cold shock domains in Bacillus cereus [abstract]. Abstracts, 96th General Meeting of American Society of Microbiology; May 1996; Washington D.C. p 317. Berry ED, Foegeding PM. 1997. Cold temperature adaptation and growth of microorganisms. J Food Prot 60(12): 1583–94. Betts GD, Linton P, Betteridge RJ. 2000. Synergistic effects of sodium chloride, temperature and pH on growth of spoilage yeasts: a research note. Food Microbiol 17(1): 47–52. Beuchat LR. 1981. Combined effects of solutes and food preservatives on rates of inactivation and colony formation by heated spores and vegetative cells of moulds. Appl Environ Microbiol 41: 472–7. Beuchat LR. 1982. Thermal inactivation of yeasts in fruit juices supplemented with food preservatives and sucrose. J Food Sci 47: 1679–82. Beumer RR, TeGiffel MC, Cox JL, Rombouts FM, Abee T. 1994. Effect of exogenous proline, betaine, and cartinine on growth of Listeria monocytogenes in minimal medium. Appl Environ Microbiol 60(4): 1359–63. Bills S, Restaino L, Lenovich LM. 1982. Growth response of an osmotolerant sorbate-resistant yeast, Saccharomyces rouxii, at different sucrose and sorbate levels. J Food Prot 45(12): 1120–4. Bodnauk PW, Golden DA. 1996. Influence of pH and incubation temperature on fatty acid composition and virulence factors of Yersinia enterocolitica. Food Microbiol 13(1): 17–22. Booth IR, Kroll RG. 1989. The preservation of foods by low pH. In: GW Gould, editor. Mechanisms of action of food preservation procedures. London : Elsevier Applied Science. p 119–60. Booth IR, Pourkomailian B, McLaggan D, Koo SP. 1994. Mechanisms controlling compatible solute accumulation: a consideration of the genetics and physiology of bacterial osmoregulation. J Food Eng 22: 381–97. Bower CK, Daeschel MA. 1999. Resistance responses of microorganisms in food environments. Int J Food Microbiol 50(1/2): 33–44. Brackett RE, Hao YY, Doyle MP. 1994. Ineffectiveness of hot acid sprays to decontaminate Escherichia coli O157:H7 on beef. J Food Prot 57(3): 198–203. Braley R, Piper PW. 1997. The C-terminus of yeast plasma membrane H+-ATPase is essential for the regulation of this enzyme by heat shock protein Hsp30, but not for stress activation. FEBS Lett 418: 123–6. Brown MH, Booth IR. 1991. Acidulants and low pH. In: NJ Russell, GW Gould, editors. Food preservatives. Glasgow , U. K. : Blackie. p 22–43. Brown JL, Ross T, McMeekin TA, Nichols PD. 1997. Acid habituation of Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance. Int J Food Microbiol 37: 163–73. Brown CM, Minnikin DE. 1973. The effect of growth temperature on the fatty acid composition of some psychrophilic marine pseudomonads. J Gen Microbiol 75(9): ix. Brown CM, Rose AH. 1969. Fatty acid composition of Candida utilis as affected by growth temperature and dissolved O2 tension. J Bacteriol 99: 371–8. Browne N, Dowds BCA. 2001. Heat and salt stress in the food pathogen Bacillus cereus. Lett Appl Microbiol 91: 1085–94. Browne N, Dowds BCA. 2002. Acid stress in the food pathogen Bacillus cereus. J Appl Microbiol 92(3): 404–14. Brudzinski L, Harrison MA. 1998. Influence and incubation conditions of E. coli O157:H7 and non O157:H7 isolates exposed to acetic acid. J Food Prot 61(5): 542–6. Brul S, Coote P. 1999. Preservative agents in foods: mode of action and microbial resistance mechanisms. Int J Food Microbiol 50: 1–17. Busta FF. 1978. Introduction to injury and repair of microbial cells. Adv Appl Microbiol 23: 195–201. Bygraves JA, Russell NJ. 1988. Solute tolerance and membrane lipid composition in some halotolerant food spoilage bacteria. Food Microbiol 5: 109–16. Cairney J, Booth IR, Higgins CF. 1985. Osmoregulation of gene expression in Salmonella Typhimurium: proU encodes an osmotically induced glycine betaine transport system. J Bacteriol 164: 1224–32. Casey PG, Condon S. 2002. Sodium chloride decreases the bactericidal effect of acid pH on Escherichia coli O157:H45. Int J Food Microbiol 79: 199–206. Cheroutre-Vialette M, Lebert I, Hebraud M, Labadie JC, Lebert A. 1998. Effects of pH or aw stress on growth of Listeria monocytogenes. Int J Microbiol 42: 71–77. Clarke A. 1981. Effects of temperature on the lipid composition of tetrahymena. In: GJ Morris, A Clarke, editors. Effects of low temperature on biological membranes. London : Academic Press. p 55–82. Cole MB, Keenan MHJ. 1987. Effects of weak acids and external pH on the intracellular pH of Zygosaccharomyces bailii and its implications in weak acid resistance. Yeast 3: 23–32. Coleman W, Leive L. 1979. Two mutations which affect the barrier function of the Escherichia coli K-12 outer membrane. J Bacteriol 139: 899–910. Conner DE, Kotrola JS. 1995. Growth and survival of Escherichia coli O157:H7 under acidic conditions. Appl Environ Microbiol 61: 382–5. Coote PJ, Cole MB, Jones MV. 1991. Induction of increased thermotolerance in Saccharomyces cerevisiae may be triggered by a mechanism involving intracellular pH. J Gen Microbiol 137: 1701–8. Cotter PD, Gahan CGM, Hill C. 2001. A glutamate-mediated system protects Listeria monocytogenes in gastric fluid. Mol Microbiol 40(2): 465–75. Csonka LN. 1989. Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53(1): 121–47. Csonka LN, Hanson AD. 1991 Prokaryotic osmoregulation: genetics and physiology. Ann Rev Microbiol 45: 569–606. Davail S, Feller G, Narinx E, Gerday C. 1994. Cold adaptation of proteins. J Biol Chem 269: 17448–53. Davis MJ, Coote PJ, O'Byrne CP. 1996. Acid tolerance in Listeria monocytogenes: the adaptive acid tolerance response (ATR) and growth phase-dependent acid resistance. Microbiology 142: 2975–82. De Jonge R, Ritmeester WS, Van Leusden FM. 2003a. Adaptive responses of Salmonella enterica serovar Typhimurium DT104 and other S. Typhimurium strains and Escherichia coli O157 to low pH environments. J Appl Microbiol 94: 625–32. De Jonge R, Takumi K, Ritmeester WS, Van Leusden FM. 2003b. The adaptive response of Escherichia coli O157 in an environment with changing pH. J Appl Microbiol 94: 555–60. Dinnbier U, Limpinsel E, Schmid R, Bakker EP. 1988. Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Arch Microbiol 150: 348–57. Duffy G, Riordan DC, Sheridan JJ, Call JE, Whiting RC, Blair IS, McDowell DA. 2000. Effect of pH on survival, thermotolerance and verotoxin production of Escherichia coli O157:H7 during simulated fermentation and storage. J Food Prot 63(1): 12–8. Dufrenne J, Delfgou E, Ritmeester W, Notermans S. 1997. The effect of previous growth conditions on the lag phase time of some foodborne pathogenic microorganisms. Int J Food Microbiol 34: 89–94. Eklund T. 1985a. The effect of sorbic acid and esters of p-hydroxybenzoic acid on the protonmotive force in Escherichia coli membrane vesicles. J Gen Microbiol 313: 73–6. Eklund T. 1985b. Inhibition of microbial growth at different pH levels by benzoic and propionic acids and esters of p-hydroxybenzoic acid. Int J Food Microbiol 2: 159–67. Eklund T. 1989. Organic acids and esters. In: GW Gould, editor. Mechanisms of action of food preservation procedures. London : Elsevier Applied Science. p 161–200. Eklund T. 1983. The antimicrobial effect of dissociated and undissociated sorbic acid at different pH levels. J Appl Bacteriol 54: 383–9. Eraso P, Cid A, Serrano R. 1987. Tight control of amount of yeast plasma membrane ATPase during changes in growth conditions and gene dosage. FEBS Lett 224: 193–7. Eraso P, Portillo F. 1994. Molecular mechanism of regulation of yeast plasma membrane H+ATPase by glucose. J Biol Chem 269(14): 10393–9. Etchegaray JP, Inouye M. 1999. CspA, CspB and CspG major cold shock proteins of E. coli are induced at low temperatures under conditions that completely block protein synthesis. J Bacteriol 181(6): 1827–30. Evans RI, McClure PJ, Gould GW, Russell NJ. 1998. The effect of growth temperature on the phospholipid and fatty acyl compositions of non-proteolytic Clostridium botulinum. Int J Food Microbiol 40: 159–67. Everis L, Betts G. 2001. pH stress can cause cell elongation in Bacillus and Clostridium species: a research note. Food Contr 12: 53–6. Fang FC, Libby SJ, Buchmeier NA, Loewen PC, Switala J, Harwood J, Guiney DG. 1992. The alternative sigma factor (rpoS) regulates Salmonella virulence. Proc Nat Acad Sci USA 89: 11978–82. Farrell J, Rose AH. 1967. Temperature effects on microorganisms. In: AH Rose, editor. Thermobiology. London : Academic Press. p 147–218. Fernanda Rosa M, Sa-Correia I. 1991. In vivo activation by ethanol of plasma membrane ATPase of Saccharomyces cerevisiae. Appl Environ Microbiol 57: 830–5. Flanders KJ, Donnelly CW. 1994. Injury, resuscitation, and detection of Listeria spp. from frozen environments. Food Microbiol 11: 473–80. Fleet GH. 1992. Spoilage yeasts. Crit Rev Microbiol 12: 1–44. Foster JW. 1991. Salmonella acid shock proteins are required for adaptive acid tolerance response. J Bacteriol 173: 6896–902. Foster JW. 1993. The acid tolerance response of Salmonella Typhimurium involves transient synthesis of key acid shock proteins. J Bacteriol 175: 1981–7. Foster JW. 2001. Acid stress response of Salmonella and E. coli: survival mechanisms, regulation, and implications for pathogenesis. J Microbiol 39(2): 89–94. Foster JW, Hall HK. 1990. Adaptive acidification tolerance response of Salmonella Typhimurium. J Bacteriol 172: 771–8. Foster JW, Hall HK. 1991. Inducible pH homeostasis and the acid tolerance response of Salmonella Typhimurium. J Bacteriol 173: 5129–35. Foster JW, Spector M. 1995. How Salmonella survives against the odds. Ann Rev Microbiol 49: 145–74. Fraser KR, Sue D, Wiedman M, Boor K, O'Byrne CP. 2003. Role of sigmaB in regulating the compatible solute uptake of systems of Listeria monocytogenes: osmotic induction of opuC is sigmaB dependent. Appl Environ Microbiol 69(4) 2015–22. Fulco AJ. 1970. Biosynthesis of unsaturated fatty acids in bacilli. J Biol Chem 43: 215–41. Gahan CGM, Hill C. 1999. The relationship between acid stress responses and virulence in Salmonella Typhimurium and Listeria monocytogenes. Int J Food Microbiol 50(1/2): 93–100. Gahan CGM, O'Driscoll B, Hill C. 1996. Acid adaptation of Listeria monocytogenes can enhance survival in acidic foods and during milk fermentation. Appl Environ Microbiol 62: 3128–32. Galinski EA. 1995. Osmoadaptation of bacteria. Adv Microbiol Phys 37: 273–328. Gallinski EA, TrÜper HG. 1994. Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15: 95–108. Garren DM, Harrison MA, Russell SM. 1998. Acid tolerance and acid shock responses of Escherichia coli O157:H7 and non-O157:H7 isolates provide cross protection to sodium lactate and sodium chloride. J Food Prot 61(2): 158–61. Gay M, Cerf O. 1997. Significance of temperature and preincubation temperature on survival of Listeria monocytogenes at pH 4.8. Lett Appl Microbiol 25: 257–60. Giaever H, Styrvold O, Kaasen I, Strom AR. 1988. Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J Bacteriol 170: 2841–9. Gill CO. 1975. Effect of growth temperature on the lipids of Pseudomonas fluorescens. J Gen Microbiol 89: 293–8. Golden DA, Beauchat LR. 1992a. Effects of potassium sorbate on growth patterns, morphology, and heat resistance of Zygosaccharomyces rouxii at reduced water activity. Can J Microbiol 38: 1252–9. Golden DA, Beuchat LR. 1992b. Interactive effects of solutes, potassium sorbate and incubation temperature on growth, heat resistance and tolerance to freezing of Zygosaccharomyces rouxii. J Appl Bact 73: 524–30. Golden DA, Beuchat LR, Hitchcock HL. 1994. Changes in fatty acid composition of various of Zygosaccharomyces rouxii as influenced by solutes, potassium sorbate and incubation temperature. Int J Food Microbiol 21: 293–303. Goldstein J, Pollitt NS, Inouye M. 1990. Major cold shock protein of Escherichia coli. Proc Nat Acad Sci 87: 283–7. Goodson M, Rowbury RJ. 1989a. Resistance of acid-habituated Escherichia coli to organic acids and its medical and applied significance. Lett Appl Microbiol 8: 211–4. Goodson M, Rowbury RJ. 1989b. Habituation to normal lethal acidity by prior growth of Escherichia coli at a sublethal acid pH value. Lett Appl Microbiol 8: 77–9. Gould GW. 1989. Drying, raised osmotic pressure and low water activity. In: GW Gould, editor. Mechanisms of action of food preservation procedures. London : Elsvier Applied Science. p 97–118. Gould GW. 1999. Overview of methods for approaching microbial stress and their relevance in foods. In: International Symposium Microbial Stress Abstracts; 1999 June 14–6; France. p 87. Gould GW, Christian JHB. 1988. Food preservation by moisture control. In: CC Seow, TT Teng, CH Quah, editors. Characterisation of the state of water in foods–biological aspects. London , U. K. : Elsevier. Gounot AM. 1991. Bacterial life at low temperature: physiological aspects and biotechnological implications. J Appl Bacteriol 71: 386–97. Goverde RLJ, Kusters JG, Huis-In't-Veld JHJ. 1994. Growth rate and physiology of Yersinia enterocolitica; influence of temperature and presence of the virulence plasmid. J Appl Bact 77(1): 96–104. Graham JE, Wilkinson BJ. 1992. Staphylococcus aureus osmoregulation: roles of choline, glycine, betaine, proline and taurine. J Bacteriol 174: 2711–16. Graumann P, Marahiel MA. 1994. The major cold shock protein of Bacillus subtilis CspB binds with high affinity to the ATTGG and CCAAT sequences in single stranded oligonucleotides. FEBS Lett 338: 157–60. Graumann P, Marahiel MA. 1999a. Cold shock response in Bacillus subtilis. J Mol Microbiol Biotech 1(2): 203–9. Graumann PL, Marahiel MA. 1999b. Cold shock proteins CspB and CspC are major stationary phase induced proteins in Bacillus subtilis. Arch Microbiol 171(2): 135–8. Graumann P, Schroder K, Schmid R, Marahiel MA. 1996. Cold shock stress induced proteins in Bacillus subtilis. J Bacteriol 178: 4611–9. Greenway DLA, England RR. 1999. The intrinsic resistance of E. coli to various antimicrobial agents requires ppGpp and σs. Lett Appl Microbiol 29(5): 323–6. Guillot A, Obis D, Mistou MY. 2000. Fatty acid membrane composition and activation of glycine-betaine transport in Lactococcus lactis subjected to osmotic stress. J Food Microbiol 55(1/3): 47–51. Gutierrez C, Abee T, Booth IR. 1995. Physiology of the osmotic stress response in microorganisms. Int J Food Microbiol 28: 233–44. Gutierrez C, Ardourel M, Bremer E, Middendorf A, Boos W, Ehman U. 1989. Analysis and DNA sequence of the osmoregulated treA gene encoding the periplasmic trehalose of Escherichia coli K12. Mol Gen Genet 217: 347–54. Hall HK, Karem KL, Foster JW. 1995. Molecular responses of microbes to environmental pH stress. Adv Microbiol Phys 37: 229–64. Hebraud M, Potier P. 1999. Cold shock response and low temperature adaptation in psychrotrophic bacteria. J Mol Microbiol Biotech 1(2): 211–9. Hendrick JP, Hartl FU. 1993. Molecular chaperone functions of heat shcok proteins. Ann Rev Biochem 62: 349–84. Henriques M, Quintas C, Loureiro D. 1997. Extrusion of benzoic acid in Saccharomyces cerevisiae by an energy dependent mechanism. Microbiology 143: 1877–83. Herbert RA. 1986. The ecology and physiology of psychrophilic microorganisms In: RA Herbert, GA Codd, editors. Microbes in extreme environments. London : The Society for General Microbiology, Academic Press. p 1–24. Herbert RA. 1989. Microbial growth at low temperature. In: GW Gould, editor. Mechanisms of action of food preservation procedures. London : Elsevier Applied Science. p 71–96. Herbert RA, Bell CR. 1977. Growth characteristics of an obligatory psychrophilic Vibrio sp. Arch Microbiol 113: 215–20. Heyde M, Portalier H. 1987. Regulation of major outer membrane porin proteins of Escherichia coli K12 by pH. Mol Gen Genet 208(3): 511–7. Higgins CF, Dorman CJ, Stirling DA, Waddell L, Booth IR, May G, Bremer L. 1988. A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. Typhimurium and E. coli. Cell 52: 569–84. Hill C, O'Driscoll B, Booth I. 1995. Acid adaption and food poisoning microorganisms. Int J Food Microbiol 28: 245–54. Holyoak CD, Stratford M, Mcmullin Z, Cole MB, Crimmins K, Brown AJP, Coote PJ. 1996. Activity of the plasma membrane H+-ATPase and optimal glycolytic flux are required for rapid adaption and growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid. Appl Environ Microbiol 62: 3158–64. Hosono K. 1992. Effect of salt stress on lipid composition and membrane fluidity of the salt-tolerant yeast Zygosaccharomyces rouxii. J Gen Microbiol 138: 91–6. Hunter K, Rose AH. 1972. Lipid composition of Saccharomyces cerevisiae as influenced by growth temperature. Biochem Biophys Acta 260: 639–53. Iel S-B, Audia JP, Yong K-P, Foster JW. 2002. Autoinduction of the ompR response regulator by acid shock and control of Salmonella enterica acid tolerance response. Molec Microbiol 44(5): 1235–50. Isam LL, Khambatta ZS, Moluf JL, Akers DF, Martin SE. 1995. Filament formation in Listeria monocytogenes. J Food Prot 58(9): 1031–3. Jaenicke R. 1990. Protein structure and function at low temperature. In: The Royal Society, editor. Life at low temperatures. Proceedings of a Royal Society Discussion Meeting; 1–2 June 1989; London. London , U.K. : The Royal Society. p 19–25. Jensen RH, Woolfolk CA. 1985. Formation of filaments by Pseudomonas putida. Appl Env Microbiol 50: 364–72. Jewell JB, Kashket ER. 1991. Osmotically regulated transport of proline by Lactobacillus acidophilus IFO 3532. Appl Environ Microbiol 57: 2829–33. Jones PG, Cashel M, Glaser G, Neidhart FC. 1992. Function of a relaxed-like state following temperature downshifts in Escherichia coli. J Bacteriol 174: 3913–4. Jones PG, Inouye M. 1994. Microreview: the cold shock response–a hot topic. Mol Microbiol 11(5): 811–8. Jones PG, Vanbogelen RA, Neidhart FC. 1987. Induction of proteins in response to low temperature in Escherichia coli. J Bacteriol 169: 2092–5. Julseth CR, Inniss WE. 1990. Induction of protein synthesis in response to cold shock in the psychrotrophic yeast Trichosporon pullulans. Can J Microbiol 36: 519–24. Juneja VK, Davidson PM. 1993. Influence of fatty acid composition on resistance of Listeria monocytogenes to antimicrobials. J Food Prot 56(4): 302–5. Kabara JJ, Eklund T. 1991. Organic acids and esters. In: NJ Russell, GW Gould, editors. Food preservatives. Glasgow , U. K. : Blackie. p 22–43. Kaenjak A, Graham JE, Wilkinson BJ. 1993. Choline transport activity in Staphylococcus aureus induced by osmotic stress and low phosphate concentrations. J Bacteriol 175: 2400–6. Kates M, Hagen PO. 1964. Influence of temperature on fatty acid composition of psychrotrophic and mesophilic Serratia spp. Can J Biochem 42: 481–8. Kempf B, Bremer E. 1998. Uptake and synthesis of compatible solutes as microbial stress responses to high osmolarity environments. Arch Microbiol 170: 319–30. Killham K, Firestone MK. 1984. Proline transport increases growth efficiency in salt stressed Streptomyces griseus. Appl Environ Microbiol 48: 239–41. Klein W, Weber MHW, Marahiel MA. 1999. Cold shock response of Bacillus subtilis: isoleucine-dependent switch in the fatty acid branching pattern adaption to low temperatures. J Bacteriol 181(17): 5341–9. Kogut M, Russell NJ. 1984. The growth and phospholipid composition of a moderately halophilic bacterium during adaptation to changes in salinity. Curr Microbiol 10: 95–8. Kondo K, Inouye M. 1991. TIP1, a cold shock-inducible gene of Saccharomyces cerevisiae. J Biol Chem 266: 1737–44. Koo SP, Higgins CF, Booth IR. 1991. Regulation of compatible solute accumulation in Salmonella Typhimurium evidence for a glycine betaine efflux system. J Gen Microbiol 137: 2617–25. Koutsoumanis KP, Kendall PA, Sofos JN. 2003. Effect of food processing-related stresses on acid tolerance of Listeria monocytogenes. Appl Env Microbiol 69(12): 7514–6. Krebs HA, Wiggins D, Stubbs M, Sols A, Bedoya F. 1983. Studies on the mechanism of the antifungal action of benzoate. Biochem J 214: 657–63. Kroll RG, Patchett RA. 1992. Induced acid tolerance in Listeria monocytogenes. Lett Appl Microbiol 14: 224–7. Kubo I, Lee SH. 1998. Potentiation of antifungal activity of sorbic acid. J Agric Food Chem 46: 4052–5. Lambert LA, Abshire K, Blankenhorn D, Slonczewski JL. 1997. Proteins induced in Escherichia coli by benzoic acid. J Bacteriol 179: 7595–9. Lange R, Hengge-Aronis R. 1991a. Growth phase-regulated expression of bolA and morphology of stationary phase Escherichia coli cells are controlled by the novel sigma factor σs. J Bacteriol 173: 4474–81. Lange R, Hengge-Aronis R. 1991b. Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol Microbiol 5: 49–59. Lee IS, Lin J, Hall HK, Bearson B, Foster JW. 1995. The stationary-phase sigma factor sigma S (rpoS) is required for a sustained acid tolerance response in virulent Salmonella Typhimurium. Mol Microbiol 17: 155–67. Lee IS, Slonczewski JL, Foster JW. 1994. A low-pH inducible, stationary-phase acid tolerance response in Salmonella Typhimurium. J Bacteriol 176: 1422–6. Leistner L, Russell NJ. 1991. Solutes and low water activity. In: GW Gould, NJ Russell, editors. Food preservatives. London : Blackie and Son Ltd. p 111–34. Lelivelt MJ, Kawula TH. 1995. Hsc66, an Hsp70 homolog in Escherichia coli is induced by cold shock but not by heat shock. J Bacteriol 177: 4900–7. LePage C, Fayolle F, Hermann M, Vandecasteele JP. 1987. Changes in the lipid composition of Clostridium acetobutylicum during acetone-butanol fermentation: effects of solvents, growth temperature and pH. J Gen Microbiol 133

Referência(s)