Artigo Revisado por pares

2,2′‐Bipyrimidineoxalatocopper( II ) Complexes: From the Mononuclear Complex to the 2D Sheetlike Polymer

1993; Wiley; Volume: 32; Issue: 4 Linguagem: Inglês

10.1002/anie.199306131

ISSN

1521-3773

Autores

Giovanni De Munno, Miguel Julve, F. Nicolò, Frances Lloret, Juan Faus, Rafael Ruiz‐García, Ekkehard Sinn,

Tópico(s)

Lanthanide and Transition Metal Complexes

Resumo

Angewandte Chemie International Edition in EnglishVolume 32, Issue 4 p. 613-615 Communication 2,2′-Bipyrimidineoxalatocopper(II) Complexes: From the Mononuclear Complex to the 2D Sheetlike Polymer† Prof. Giovanni De Munno, Prof. Giovanni De Munno Dipartimento di Chimica, Università della Calabria I-87030 Arcavacata di Rende. Cosenza (Italy)Search for more papers by this authorProf. Miguel Julve, Corresponding Author Prof. Miguel Julve Departament de Quimica Inorgànica, Facultat de Química de la Universitat de València Dr. Moliner 50, E-46100-Burjassot, València (Spain)Departament de Quimica Inorgànica, Facultat de Química de la Universitat de València Dr. Moliner 50, E-46100-Burjassot, València (Spain)Search for more papers by this authorDr. Francesco Nicolo, Dr. Francesco Nicolo Dipartimento di Chimica e Struttura Moleculare, Universitá di Messina Messina (Italy)Search for more papers by this authorDr. Frances Lloret, Dr. Frances Lloret Departament de Quimica Inorgànica, Facultat de Química de la Universitat de València Dr. Moliner 50, E-46100-Burjassot, València (Spain)Search for more papers by this authorProf. Juan Faus, Prof. Juan Faus Departament de Quimica Inorgànica, Facultat de Química de la Universitat de València Dr. Moliner 50, E-46100-Burjassot, València (Spain)Search for more papers by this authorRafael Ruiz, Rafael Ruiz Departament de Quimica Inorgànica, Facultat de Química de la Universitat de València Dr. Moliner 50, E-46100-Burjassot, València (Spain)Search for more papers by this authorProf. Ekkehard Sinn, Prof. Ekkehard Sinn School of Chemistry, University of Hull Kingston upon Hull, HU6 7RX (UK)Search for more papers by this author Prof. Giovanni De Munno, Prof. Giovanni De Munno Dipartimento di Chimica, Università della Calabria I-87030 Arcavacata di Rende. Cosenza (Italy)Search for more papers by this authorProf. Miguel Julve, Corresponding Author Prof. Miguel Julve Departament de Quimica Inorgànica, Facultat de Química de la Universitat de València Dr. Moliner 50, E-46100-Burjassot, València (Spain)Departament de Quimica Inorgànica, Facultat de Química de la Universitat de València Dr. Moliner 50, E-46100-Burjassot, València (Spain)Search for more papers by this authorDr. Francesco Nicolo, Dr. Francesco Nicolo Dipartimento di Chimica e Struttura Moleculare, Universitá di Messina Messina (Italy)Search for more papers by this authorDr. Frances Lloret, Dr. Frances Lloret Departament de Quimica Inorgànica, Facultat de Química de la Universitat de València Dr. Moliner 50, E-46100-Burjassot, València (Spain)Search for more papers by this authorProf. Juan Faus, Prof. Juan Faus Departament de Quimica Inorgànica, Facultat de Química de la Universitat de València Dr. Moliner 50, E-46100-Burjassot, València (Spain)Search for more papers by this authorRafael Ruiz, Rafael Ruiz Departament de Quimica Inorgànica, Facultat de Química de la Universitat de València Dr. Moliner 50, E-46100-Burjassot, València (Spain)Search for more papers by this authorProf. Ekkehard Sinn, Prof. Ekkehard Sinn School of Chemistry, University of Hull Kingston upon Hull, HU6 7RX (UK)Search for more papers by this author First published: April 1993 https://doi.org/10.1002/anie.199306131Citations: 137 † This work was supported by the Spanish DGICYT (Project PB91-0807-602-01) and the Italian Ministero dell'Università e della Ricerca Scientifica e Tecnologica. R. R. thanks the Consellería de Cultura. Educació i Ciència for a doctoral grant. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract An unusual two-dimensional mesh of CuII ions is found in complex 1(see picture); the metal atoms are bridged by oxalato (ox) and bipyrimidine (bpym) ligands to form ringshaped hexamers. Variable-temperature magnetic susceptibility measurements indicate that antiferromagnetic coupling between the Cu atoms occurs. References 1 K. V. Krisnamurthy, G. M. Harris, Chem. Rev. 1961, 61, 213. 10.1021/cr60211a001 Web of Science®Google Scholar 2 I. Castro, J. Faus, M. Julve, A. Gleizes, J. Chem. Soc. Dalton Trans. 1991, 1937, and references therein. Google Scholar 3 O. Kahn, Angew. Chem. 1985, 97, 837; 10.1002/ange.19850971008 CASGoogle Scholar Angew. Chem. Int. Ed. Engl. 1985, 24, 834; 10.1002/anie.198508341 Web of Science®Google Scholar H. Oshio, U. Nagashima, Inorg. Chem. 1992, 31, 3295; 10.1021/ic00041a025 CASWeb of Science®Google Scholar A. Gleizes, M. Julve, M. Verdaguer, J. A. Real, J. Faus, X. Solans, J. Chem. Soc. Dalton Trans. 1992, 3209. Google Scholar 4 Y. Pei, Y. Journaux, O. Kahn, Inorg. Chem. 1989, 28, 100; 10.1021/ic00300a023 CASWeb of Science®Google Scholar H. Okawa, N. Matsumoto, H. Tamaki, Communication presented at the 29th I.C.C. Switzerland 1992. Google Scholar 5 J. J. Girered, M. Verdaguer, O. Kahn, Inorg. Chem. 1980, 19, 274; 10.1021/ic50203a060 Web of Science®Google Scholar M. Verdaguer, A. Michalowicz, J. J. Girerd, N. Alberding, O. Kahn, Inorg. Chem. 1980, 19, 3271. 10.1021/ic50213a015 CASWeb of Science®Google Scholar 6 M. Julve, M. Verdaguer, O. Kahn, A. Gleizes, M. Philoche-Levisalles, Inorg. Chem. 1984, 23, 3808. 10.1021/ic00191a028 CASWeb of Science®Google Scholar 7 I. Castro, M. Julve, G. De Munno, J. A. Real, F. Lloret, J. Faus, J. Chem. Soc. Dalton Trans. 1992, 1739, and references therein. Google Scholar 8(a) G. Brewer, E. Sinn, Inorg. Chem. 1985, 24, 4580; 10.1021/ic00220a030 CASWeb of Science®Google Scholar(b) M. Julve, G. De Munno, G. Bruno, M. Verdaguer, Inorg. Chem. 1988, 27, 3160; 10.1021/ic00291a023 CASWeb of Science®Google Scholar(c) M. Julve, M. Verdaguer, G. De Munno, J. A. Real, G. Bruno, Inorg. Chem., in press. Google Scholar 9 S. Alvarez, M. Julve, M. Verdaguer, Inorg. Chem. 1990, 29, 4500. 10.1021/ic00347a033 CASWeb of Science®Google Scholar 10 X-ray structure analyses: Siemens R3m/V automatic diffractometer, MoKα, λ = 0.71073 Å, graphite monochromator, 298 K. Data collection, solution and refinement: ω-2θ, standard Patterson methods with subsequent Fourier recycling, SHELXTL-PLUS [11]. 1: C10H20N4CuO11 (Mr = 435.6), orthorhombic, space group P212121, a = 6.544(2), b = 13.838(4), c = 19.319(7) Å, V = 1749.4(10) Å3, Z = 4, ρcalcd = 1.655 g cm−3, μ = 13.1 cm−1, 2θ range 3–50° crystal size 0.35 × 0.38 × 0.20 mm3, F(000) = 900. 1803 unique reflections, and 1475 assumed as observed with I > 3σ( I). Refinement of 199 variables with anisotropic thermal parameters for all non-hydrogen atoms (except the oxygen atoms of water molecules) gave R(F0) = 0.0525, Rw(F0) = 0.0613 and S = 1.49 with w−1 = σ2(F0) + 0.002395( F0)2. 2: C12H16N4Cu2O13 (Mr = 551.4), monoclinic, space group C2/m, a = 9.445(2), b = 16.622(3), c = 6.202(1) Å, β = 101.4(1)°, V = 954.6(3) Å3, Z = 2, ρcalcd = 1.918 g cm−3, μ = 23.1 cm−1, 2θ range 3–55°, crystal size 0.34 × 0.19 × 0.23 mm3, F(000) = 556. 1147 unique reflections, and 981 assumed as observed with I > 3σ(I). Ψ-scan absorption correction was applied (max. and min. transmission factors 0.355/0.472) [12]. Refinement of 86 variables with anisotropic thermal parameters for all non-hydrogen atoms gave R(F0) = 0.0420, Rw(F0) = 0.0470 and S = 1.67 with w−1 = σ2(F0) + 0.001000(F0)2. The space group of 2 cannot be uniquely determined from the systematic absences, which only indicate the presence of a C-centered cell; the choice is between the acentric C2 or Cm groups and the centric C2/m one. The latter was favored by the intensities statistics, and consequently the structure solution and refinement were carried out in the centrosymmetric space group. The analysis of the residual electronic density in a final difference-Fourier map revealed three distinct peaks (two. O(4) and O(5), in general positions and one, O(3), in special position on a twofold axis), which could be interpreted as crystallization water molecules. The elemental analysis indicated a 5:2 ratio between the crystallization water and copper. Five oxygen atoms of the water molecules may be obtained by applying the twofold axis operation to the three peaks, while 10 positions are obtained when also the mirror operation is also applied. Then, we tried to refine the structure in C2 and Cm, but all our attempts gave worse results with large correlations between atomic positional parameters. Therefore, the refinement was completed in C2/m by assuming a disordered disposition of the water molecules in which 10 half oxygen atoms are arranged as two staggered five-membered rings. Further details of the crystal structure investigations are available on request from the Fachinformationszentrum Karlsruhe. Gesellschaft für wissenschaftlich-technische Information mbH, D-W-7514 Eggenstein-Leopoldshafen 2 (FRG), on quoting the depository number CSD-56958, the names of the authors, and the journal citation. Google Scholar 11SHELXTL PLUS, Version 3.4. Siemens Analytical X-Ray Instruments Inc., Madison, WI, 1989. Google Scholar 12 A. C. T. North, D. C. Philips, F. S. Mathews, Acta Crystallogr. Sect. A, 1968, 24, 351. 10.1107/S0567739468000707 Google Scholar 13 Bond lengths and angles in the bpym and oxalato ligands are in agreement with those reported in the literature. Although the pyrimidyl rings of bpym are planar, the ligand as a whole is not planar (the dihedral angle between the six-membered pyrimjdyl rings is 4.4(3)°). The oxalato ligand is quite planar; the maximum deviation from the mean plane is 0.077(7) Å at O(2). The dihedral angle between the mean planes of the bpym and oxalato ligands is 7.1(2)°. The OC bond lengths of oxalate occur in two sets (1.281(9) and 1.267(9) Å for O(2)–C(9) and O(1)–C(10)), and 1.248(10) and 1.212(12) Å for O(3)–C(9) and O(4)–C(10)) as a result of its bidentate coordination to copper. Google Scholar 14 The bpym and oxalato ligands are planar and form a dihedral angle of 99.4(1)°. The OC bond lengths in the oxalato ligand in 2 are all identical (1.242(4) Å) on account of its quasi-symmetrical bischelating coordination to copper. Google Scholar 15 The disorder is such that two sets of five half oxygen atoms are arranged as a ten-membered ring (O…︁O separation ca. 1.4 Å) formed by two staggered pentagons. For clarity, only one set of five atoms is shown in the top picture in Figure 2, where it should be noted that O(3) lies on the twofold axis. The five water molecules are almost planar (the largest deviation from the mean plane is 0.07(1) Å. The dihedral angle between this plane ant that of bpym is 15.7(2). Google Scholar Citing Literature Volume32, Issue4April 1993Pages 613-615 ReferencesRelatedInformation

Referência(s)