An improved SUMmOn-based methodology for the identification of ubiquitin and ubiquitin-like protein conjugation sites identifies novel ubiquitin-like protein chain linkages
2009; Wiley; Volume: 10; Issue: 2 Linguagem: Inglês
10.1002/pmic.200900648
ISSN1615-9861
AutoresStanley M. Jeram, Tharan Srikumar, Xiang Dong Zhang, H. Anne Eisenhauer, Richard S. Rogers, Patrick G. A. Pedrioli, Michael J. Matunis, Brian Raught,
Tópico(s)Autophagy in Disease and Therapy
ResumoPROTEOMICSVolume 10, Issue 2 p. 254-265 Research Article An improved SUMmOn-based methodology for the identification of ubiquitin and ubiquitin-like protein conjugation sites identifies novel ubiquitin-like protein chain linkages Stanley M. Jeram, Stanley M. Jeram Ontario Cancer Institute, and McLaughlin Centre for Molecular Medicine, Toronto, ON, CanadaSearch for more papers by this authorTharan Srikumar, Tharan Srikumar Ontario Cancer Institute, and McLaughlin Centre for Molecular Medicine, Toronto, ON, CanadaSearch for more papers by this authorXiang-Dong Zhang, Xiang-Dong Zhang Bloomberg School of Public Health, Department of Biochemistry and Molecular Biology, The Johns Hopkins University, Baltimore, MD, USASearch for more papers by this authorH. Anne Eisenhauer, H. Anne Eisenhauer Ontario Cancer Institute, and McLaughlin Centre for Molecular Medicine, Toronto, ON, CanadaSearch for more papers by this authorRichard Rogers, Richard Rogers Institute for Systems Biology, Seattle, WA, USASearch for more papers by this authorPatrick G. A. Pedrioli, Patrick G. A. Pedrioli Institute of Biochemistry, ETH Zurich, Zurich, SwitzerlandSearch for more papers by this authorMichael Matunis, Michael Matunis Bloomberg School of Public Health, Department of Biochemistry and Molecular Biology, The Johns Hopkins University, Baltimore, MD, USASearch for more papers by this authorBrian Raught, Corresponding Author Brian Raught [email protected] Ontario Cancer Institute, and McLaughlin Centre for Molecular Medicine, Toronto, ON, CanadaOntario Cancer Institute, and McLaughlin Centre for Molecular Medicine, 101 College St., MaRS TMDT 9-805, Toronto, ON, M5G 1L7, Canada Fax: +1-416-581-7629===Search for more papers by this author Stanley M. Jeram, Stanley M. Jeram Ontario Cancer Institute, and McLaughlin Centre for Molecular Medicine, Toronto, ON, CanadaSearch for more papers by this authorTharan Srikumar, Tharan Srikumar Ontario Cancer Institute, and McLaughlin Centre for Molecular Medicine, Toronto, ON, CanadaSearch for more papers by this authorXiang-Dong Zhang, Xiang-Dong Zhang Bloomberg School of Public Health, Department of Biochemistry and Molecular Biology, The Johns Hopkins University, Baltimore, MD, USASearch for more papers by this authorH. Anne Eisenhauer, H. Anne Eisenhauer Ontario Cancer Institute, and McLaughlin Centre for Molecular Medicine, Toronto, ON, CanadaSearch for more papers by this authorRichard Rogers, Richard Rogers Institute for Systems Biology, Seattle, WA, USASearch for more papers by this authorPatrick G. A. Pedrioli, Patrick G. A. Pedrioli Institute of Biochemistry, ETH Zurich, Zurich, SwitzerlandSearch for more papers by this authorMichael Matunis, Michael Matunis Bloomberg School of Public Health, Department of Biochemistry and Molecular Biology, The Johns Hopkins University, Baltimore, MD, USASearch for more papers by this authorBrian Raught, Corresponding Author Brian Raught [email protected] Ontario Cancer Institute, and McLaughlin Centre for Molecular Medicine, Toronto, ON, CanadaOntario Cancer Institute, and McLaughlin Centre for Molecular Medicine, 101 College St., MaRS TMDT 9-805, Toronto, ON, M5G 1L7, Canada Fax: +1-416-581-7629===Search for more papers by this author First published: 21 January 2010 https://doi.org/10.1002/pmic.200900648Citations: 25Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Ubiquitin (Ub) and the ubiquitin-like proteins (Ubls) comprise a remarkable assortment of polypeptides that are covalently conjugated to target proteins (or other biomolecules) to modulate their intracellular localization, half-life, and/or activity. Identification of Ub/Ubl conjugation sites on a protein of interest can thus be extremely important for understanding how it is regulated. While MS has become a powerful tool for the study of many classes of PTMs, the identification of Ub/Ubl conjugation sites presents a number of unique challenges. Here, we present an improved Ub/Ubl conjugation site identification strategy, utilizing SUMmOn analysis and an additional protease (lysyl endopeptidase C), as a complement to standard approaches. As compared with standard trypsin proteolysis-database search protocols alone, the addition of SUMmOn analysis can (i) identify Ubl conjugation sites that are not detected by standard database searching methods, (ii) better preserve Ub/Ubl conjugate identity, and (iii) increase the number of identifications of Ub/Ubl modifications in lysine-rich protein regions. Using this methodology, we characterize for the first time a number of novel Ubl linkages and conjugation sites, including alternative yeast (K54) and mammalian small ubiquitin-related modifier (SUMO) chain (SUMO-2 K42, SUMO-3 K41) assemblies, as well as previously unreported NEDD8 chain (K27, K33, and K54) topologies. Supporting Information Detailed facts of importance to specialist readers are published as "Supporting Information". Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors. Filename Description pmic_200900648_sm_SupplInfo.pdf1.1 MB SupplInfo Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. 5 References 1Schwartz, D. C., Hochstrasser, M., A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends Biochem. Sci. 2003, 28, 321–328. 2Hochstrasser, M., Origin and function of ubiquitin-like proteins. Nature 2009, 458, 422–429. 3Kerscher, O., Felberbaum, R., Hochstrasser, M., Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 2006, 22, 159–180. 4Ciechanover, A., Iwai, K., The ubiquitin system: From basic mechanisms to the patient bed. IUBMB Life 2004, 56, 193–201. 5Hershko, A., Ciechanover, A., The ubiquitin system. Annu. Rev. Biochem. 1998, 67, 425–479. 6Kirkpatrick, D. S., Denison, C., Gygi, S. P., Weighing in on ubiquitin: The expanding role of mass-spectrometry-based proteomics. Nat. Cell Biol. 2005, 7, 750–757. 7Mosesson, Y., Yarden, Y., Monoubiquitylation: A recurrent theme in membrane protein transport. Isr. Med. Assoc. J. 2006, 8, 233–237. 8Ikeda, F., Dikic, I., Atypical ubiquitin chains: New molecular signals. 'Protein Modifications: Beyond the Usual Suspects' review series. EMBO Rep. 2008, 9, 536–542. 9Komander, D., Reyes-Turcu, F., Licchesi, J. D., Odenwaelder, P. et al., Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep. 2009, 10, 466–473. 10Thrower, J. S., Hoffman, L., Rechsteiner, M., Pickart, C. M., Recognition of the polyubiquitin proteolytic signal. EMBO J. 2000, 19, 94–102. 11Xu, P., Duong, D. M., Seyfried, N. T., Cheng, D. et al., Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 2009, 137, 133–145. 12Olzmann, J. A., Li, L., Chudaev, M. V., Chen, J. et al., Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes bia binding to HDAC6. J. Cell Biol. 2007, 178, 1025–1038. 13Hawryluk, M. J., Keyel, P. A., Mishra, S. K., Watkins, S. C. et al., Epsin 1 is a polyubiquitin-selective clathrin-associated sorting protein. Traffic 2006, 7, 262–281. 14Sobhian, B., Shao, G., Lilli, D. R., Culhane, A. C. et al., RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 2007, 316, 1198–1202. 15Varadan, R., Assfalg, M., Haririnia, A., Raasi, S. et al., Solution conformation of Lys63-linked di-ubiquitin chain provides clues to functional diversity of polyubiquitin signaling. J. Biol. Chem. 2004, 279, 7055–7063. 16Denison, C., Rudner, A. D., Gerber, S. A., Bakalarski, C. E. et al., A proteomic strategy for gaining insights into protein sumoylation in yeast. Mol. Cell. Proteomics 2005, 4, 246–254. 17Vertegaal, A. C., Andersen, J. S., Ogg, S. C., Hay, R. T. et al., Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Mol. Cell. Proteomics 2006, 5, 2298–2310. 18Vertegaal, A. C., Ogg, S. C., Jaffray, E., Rodriguez, M. S. et al., A proteomic study of SUMO-2 target proteins. J. Biol. Chem. 2004, 279, 33791–33798. 19Zhou, W., Ryan, J. J., Zhou, H., Global analyses of sumoylated proteins in Saccharomyces cerevisiae. Induction of protein sumoylation by cellular stresses. J. Biol. Chem. 2004, 279, 32262–32268. 20Wykoff, D. D., O'Shea, E. K., Identification of sumoylated proteins by systematic immunoprecipitation of the budding yeast proteome. Mol. Cell. Proteomics. 2005, 4, 73–83. 21Wohlschlegel, J. A., Johnson, E. S., Reed, S. I., Yates, J. R., III, Global analysis of protein sumoylation in Saccharomyces cerevisiae. J. Biol. Chem. 2004, 279, 45662–45668. 22Panse, V. G., Hardeland, U., Werner, T., Kuster, B., Hurt, E., A proteome-wide approach identifies sumoylated substrate proteins in yeast. J. Biol. Chem. 2004, 279, 41346–41351. 23Hannich, J. T., Lewis, A., Kroetz, M. B., Li, S. J. et al., Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J. Biol. Chem. 2005, 280, 4102–4110. 24Golebiowski, F., Matic, I., Tatham, M. H., Cole, C. et al., System-wide changes to SUMO modifications in response to heat shock. Sci. Signal 2009, 2, ra24. 25Johnson, E. S., Blobel, G., Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J. Cell Biol. 1999, 147, 981–994. 26Jeram, S. M., Srikumar, T., Pedrioli, P. G., Raught, B., Using mass spectrometry to identify ubiquitin and ubiquitin-like protein conjugation sites. Proteomics 2009, 9, 922–934. 27Tatham, M. H., Jaffray, E., Vaughan, O. A., Desterro, J. M. et al., Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 2001, 276, 35368–35374. 28Pedrioli, P. G., Raught, B., Zhang, X. D., Rogers, R. et al., Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software. Nat. Methods 2006, 3, 533–539. 29Bencsath, K. P., Podgorski, M. S., Pagala, V. R., Slaughter, C. A., Schulman, B. A., Identification of a multifunctional binding site on Ubc9p required for Smt3p conjugation. J. Biol. Chem. 2002, 277, 47938–47945. 30Xirodimas, D. P., Saville, M. K., Bourdon, J. C., Hay, R. T., Lane, D. P., Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 2004, 118, 83–97. 31Xirodimas, D. P., Novel substrates and functions for the ubiquitin-like molecule NEDD8. Biochem. Soc. Trans. 2008, 36, 802–806. 32Jones, J., Wu, K., Yang, Y., Guerrero, C. et al., A targeted proteomic analysis of the ubiquitin-like modifier nedd8 and associated proteins. J. Proteome Res. 2008, 7, 1274–1287. 33Pan, Z. Q., Kentsis, A., Dias, D. C., Yamoah, K., Wu, K., Nedd8 on cullin: Building an expressway to protein destruction. Oncogene 2004, 23, 1985–1997. 34Eng, J. K., McCormack, A. L., Yates, J. R., III, An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 1994, 5, 976–989. 35Perkins, D. N., Pappin, D. J., Creasy, D. M., Cottrell, J. S., Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999, 20, 3551–3567. 36Craig, R., Beavis, R. C., TANDEM: Matching proteins with tandem mass spectra. Bioinformatics 2004, 20, 1466–1467. 37Aebersold, R., Mann, M., Mass spectrometry-based proteomics. Nature 2003, 422, 198–207. 38Sadygov, R. G., Cociorva, D., Yates, J. R., III, Large-scale database searching using tandem mass spectra: looking up the answer in the back of the book. Nat. Methods 2004, 1, 195–202. 39Peng, J., Schwartz, D., Elias, J. E., Thoreen, C. C. et al., A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 2003, 21, 921–926. 40Pedrioli, P. G., Eng, J. K., Hubley, R., Vogelzang, M. et al., A common open representation of mass spectrometry data and its application to proteomics research. Nat. Biotechnol. 2004, 22, 1459–1466. 41Bylebyl, G. R., Belichenko, I., Johnson, E. S., The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. J. Biol. Chem. 2003, 278, 44113–44120. 42Olsen, J. V., Macek, B., Lange, O., Makarov, A. et al., Higher-energy C-trap dissociation for peptide modification analysis. Nat. Methods 2007, 4, 709–712. 43Srikumar, T., Jeram, S. M., Lam, H., Raught, B., A ubiquitin and ubiquitin-like protein spectral library. Proteomics 2010, 10, doi:10.1002/pmic.200900627, this issue. Citing Literature Volume10, Issue2No. 2 January 2010Pages 254-265 ReferencesRelatedInformation
Referência(s)