The reaction of tetranitromethane with human chorionic gonadotropin
1976; Elsevier BV; Volume: 175; Issue: 1 Linguagem: Inglês
10.1016/0003-9861(76)90501-4
ISSN1096-0384
Autores Tópico(s)Electron Spin Resonance Studies
ResumoThe reaction of tetranitromethane with human chorionic gonadotropin and its subunits has been investigated. The hormone consists of two subunits, α and β, containing four and three tyrosyl residues, respectively. Introduction of 1 nitrated tyrosine residue into the native hormone was accompanied by a 20% loss in immunological reactivity and a 50% loss in biological activity. This initial reaction occurred at α Tyr-88 and/or α Tyr-89. Exhaustive nitration of the hormone modified α tyrosines 65, 88, and 89 and resulted in 75% inactivation biologically and 50% immunologically. Either nitrated α subunit obtained by dissociation of the nitrated hormone recombined with the native β subunit to give a hormone whose activity was in reasonable agreement with that of the corresponding nitrated monomer. These results indicate involvement of α Tyr-88 and/or α Tyr 89 in binding of the hormone to its receptor. These residues are not required for binding to the β subunit, however. Tyr-65 of the α subunit is probably not involved in binding to either the β subunit or the hormone receptor. The β subunit obtained from the exhaustively nitrated hormone was unmodified and recombined with native α to give fully active hormone. About 25% of the protein was recovered as polymeric material following nitration; lesser amounts of crosslinked monomer were formed. Both were biologically inactive. The polymer products retained about 30% of the native immunological competence. Nitration of the isolated α subunit fully converted the remaining tyrosine (Tyr-37) to 3-nitrotyrosine in a two-step reaction. The fully nitrated α subunit did not recombine well with the native β subunit and the recombinant hormone has 10% or less of the native activity. Involvement of α Tyr-37 in binding to the β subunit is suggested by these data. However, exposure of this residue by a conformational change in the α subunit after dissociation of the native hormone, while it seems unlikely in view of the high disulfide content, is also consistent with the data. Reaction of the free β subunit with tetranitromethane resulted in complete nitration of Tyr-37, 85% nitration of Tyr-59, and 25% nitration of Tyr-82. The nitrated β subunit did not recombine well with native α but the isolated recombinant had two-thirds of the native activity. From these data we conclude that β Tyr-37 and/or β Tyr-59 are possibly involved in binding to the α subunit but do not have a role in the biological activity. Tyr-82 of β is apparently not involved in either subunit interactions or hormone-receptor binding.
Referência(s)