Artigo Acesso aberto Revisado por pares

Single Electron Tunneling Through Nano-Sized Cobalt Particles

1999; Volume: 11; Issue: 14 Linguagem: Inglês

10.1002/(sici)1521-4095(199910)11

ISSN

1521-4095

Autores

Christophe Petit, Tristan Cren, Dimitri Roditchev, W. Sacks, J. Klein, M. P. Piléni,

Tópico(s)

Surface Chemistry and Catalysis

Resumo

Advanced MaterialsVolume 11, Issue 14 p. 1198-1202 Communication Single Electron Tunneling Through Nano-Sized Cobalt Particles C. Petit, C. Petit Laboratoire Structure et Réactivité des Systèmes Interfaciaux, URA CNRS 1662, Université Pierre et Marie Curie (Paris VI), BP52, 4 Place Jussieu, F-75251 Paris Cedex 05 (France)Search for more papers by this authorT. Cren, T. Cren Groupe de Physique des Solides, UMR 75–88, Université Paris 6 et Paris 7, 2 Place Jussieu, F-75251 Paris Cedex (France)Search for more papers by this authorD. Roditchev, D. Roditchev Groupe de Physique des Solides, UMR 75–88, Université Paris 6 et Paris 7, 2 Place Jussieu, F-75251 Paris Cedex (France)Search for more papers by this authorW. Sacks, W. Sacks Groupe de Physique des Solides, UMR 75–88, Université Paris 6 et Paris 7, 2 Place Jussieu, F-75251 Paris Cedex (France)Search for more papers by this authorJ. Klein, J. Klein Groupe de Physique des Solides, UMR 75–88, Université Paris 6 et Paris 7, 2 Place Jussieu, F-75251 Paris Cedex (France)Search for more papers by this authorM.-P. Pileni, M.-P. Pileni Laboratoire Structure et Réactivité des Systèmes Interfaciaux, URA CNRS 1662, Université Pierre et Marie Curie (Paris VI), BP52, 4 Place Jussieu, F-75251 Paris Cedex 05 (France)Search for more papers by this author C. Petit, C. Petit Laboratoire Structure et Réactivité des Systèmes Interfaciaux, URA CNRS 1662, Université Pierre et Marie Curie (Paris VI), BP52, 4 Place Jussieu, F-75251 Paris Cedex 05 (France)Search for more papers by this authorT. Cren, T. Cren Groupe de Physique des Solides, UMR 75–88, Université Paris 6 et Paris 7, 2 Place Jussieu, F-75251 Paris Cedex (France)Search for more papers by this authorD. Roditchev, D. Roditchev Groupe de Physique des Solides, UMR 75–88, Université Paris 6 et Paris 7, 2 Place Jussieu, F-75251 Paris Cedex (France)Search for more papers by this authorW. Sacks, W. Sacks Groupe de Physique des Solides, UMR 75–88, Université Paris 6 et Paris 7, 2 Place Jussieu, F-75251 Paris Cedex (France)Search for more papers by this authorJ. Klein, J. Klein Groupe de Physique des Solides, UMR 75–88, Université Paris 6 et Paris 7, 2 Place Jussieu, F-75251 Paris Cedex (France)Search for more papers by this authorM.-P. Pileni, M.-P. Pileni Laboratoire Structure et Réactivité des Systèmes Interfaciaux, URA CNRS 1662, Université Pierre et Marie Curie (Paris VI), BP52, 4 Place Jussieu, F-75251 Paris Cedex 05 (France)Search for more papers by this author First published: 06 October 1999 https://doi.org/10.1002/(SICI)1521-4095(199910)11:14 3.0.CO;2-6Citations: 54AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Self-assembly of nanoparticles is important for many fields of nanotechnology. However, experimental studies such as spin-dependent electron tunneling have been limited by the rapid degradation of the electronic and magnetic properties of nano-objects due to their immediate oxidation in air. Here are presented for the first time scanning tunneling microscopy images at room temperature, under air, of highly oxidizable Co nanocrystals on a dodecanethiol monolayer grafted onto a gold surface. Local organization and electronic properties of the particles are described. References 1 C. Collier, T. Vossmeyer, J. R. Heath, Annu. Rev. Phys. Chem 1998, 49, 371. 2 Chem. Mater., special issue (Nanostructured Materials) 1996, 8(5). 3 F. Burmeister, C. Schafle, T. Matthes, M. Bohmisch, J. Boneberg, P. Leiderer, Langmuir 1997, 13, 1983. 4 C. Demaille, M. Brust, M. Tsionsky, A. J. Brad, Anal. Chem. 1997, 69, 2323. 5 D. V. Averin, K. K. Likharev, in Mesoscopic Phenomena in Solids (Eds: B. L. Altshuler, P. A. Lee, R. A. Webb), North-Holland, Amsterdam 1991, Ch. 6. G. Shön, U. Simon, Colloid Polym. Sci. 1995, 273, 202. 6 L. E. Chi, M. Hartig, T. Dreschler, T. Scwaak, C. Seidel, H. Fuchs, G. Schmid, Appl. Phys. A 1998, 66, S187. R. P. Andres, T. Bein, M. Dorogi, S. Feng, J. I. Henderson, C. P. Kubiak, W. Mahey, R. G. Osifchin, R. Reifenberger, Science 1996, 272, 1323. J. G. A. Dubois, J. W. Cerritsen, G. Schmid, H. van Kempen, Physica B 1996, 218, 262. 7 S. E. Kutbakin, A. V. Danilov, A. L. Bogdanov, H. Olin, T. Claesan, Appl. Phys. Lett. 1998, 73, 24. 8 M. P. Pileni, Langmuir 1997, 13, 3266. 9 A. P. Alivisatos, Science 1996, 271, 933. 10 L. Motte, F. Billoudet, M. P. Pileni, J. Phys. Chem. 1995, 99, 16 425. 11 L. Motte, F. Billoudet, E. Lacaze, J. Douin, M. P. Pileni, J. Phys. Chem B 1997, 101, 138. 12 A. Taleb, C. Petit, M. P. Pileni, Chem. Mater. 1997, 9, 950. 13 A. Taleb, C. Petit, M. P. Pileni, J. Phys. Chem. B 1998, 102, 2214. 14 S. A. Harfenist, Z. L. Wang, M. M. Alvarez, I. Vezmar, R. L. J. Whetten, Phys. Chem. 1996, 100, 13 904. 15 S. A. Harfenist, Z. L. Wang, R. L. J. Whetten, I. Vezmar, M. M. Alvarez, Adv. Mater. 1997, 9, 817. 16 S. W. Chung, G. Markovich, J. R. Heath, J. Phys. Chem. B 1998, 102, 6685. 17 C. Petit, A. Taleb, M. P. Pileni, Adv. Mater. 1998, 10, 259. 18 C. Petit, A. Taleb, M. P. Pileni, J. Phys. Chem. B 1999, 103, 1805. 19 R. P. Andres, S. Datta, M. Dorogi, J. Gomez, J. I. Henderson, D. B. Janes, V. R. Kalaganta, M. P. Samanta, W. Tian, J. Vac. Sci. Technol. A 1996, 14, 1178. 20 L. Clarke, M. N. Wybourne, L. O. Brown, JE. Hutchison, M. Yan, S. X. Cai, J. F. W. Keana, Semicond. Sci . Technol. 1998, 13, A111. 21 A. O. Gusev, A. Taleb, F. Silly, F. Charra, M. P. Pileni, unpublished. 22 U. U. Grummt, M. Geissler, T. Schmitz-Huesch, Chem. Phys. Lett. 1996, 263, 581. 23 A. Wavro, A. Kasuya, Acta Phys. Pol. A 1997, 93, 443. 24 L. F. Schelp, A. Fert, F. Fettar, P. Holody, S. F. Lee, J. L. Maurice, F. Petroff, A. Vaures Phys. Rev. B, 1997, 56, R5747. 25 The low-temperature STM/STS unit was created by W. Sacks, D. Roditchev, and P. Mallet and is described in the following papers: P. Mallet, W. Sacks, D. Roditchev, D. Défourneau, J. Klein, J. Vac. Sci. Technol. B 1996, 14, 1070. P. Mallet, D. Roditchev, W. Sacks, D. Défournea, J. Klein, Phys. Rev. B 1996, 54, 13 324. 26 Standard deviation, σ is calculated according to Equation 1 where D and N are the average diameter and the number of particles, respectively. The size distribution is evaluated by the ratio σ /D σ = {Σ[N1(D1-D)2]/[N-1]}1/2 (1) 27 Transmission electron microscopy (TEM) image and electron diffraction spectroscopy (EdS) patterns were obtained with a JEOL JEM 2000FX microscope. 28 At high temperature, above the blocking, the magnetization curve is simulated by the Langevin relationship shown in Equation 2, where μ= MsπD3/6, M(D), Ms, D, and H are the magnetization, the saturation magnetization, the particle diameter, and the applied field, respectively. M(D)= Ms × {coth(μH/kT) - kT/μH} (2) 29 Diffractomer D22 in LURE (CEA-CNRS-University of Paris Sud, Orsay) France. 30 The magnetic studies were performed using a commercial SQUID magnetometer Cryogenic S600. 31 L. C. Giancarlo, G. W. Flynn, Annu. Rev. Phys. Chem. 1998, 49, 297. 32 C. A. Widrig, C. A. Alveo, M. D. Porteer, J. Am. Chem. Soc. 1991, 113, 2805. 33 Y. T. Kim, A. J. Bard, Langmuir 1992, 8, 1096. 34 K. Edinger, A. GölzhAUuser, K. Demota, C. Wöll, M. Grunze, Langmuir 1993, 9, 4. 35 J. P. Bucher, L. Santesson, K. Kern, Langmuir 1994, 10, 979. 36 A. H. Shäfer, C. Seidel, L. Chi, H. Fuchs, Adv. Mater. 1998, 10, 839. 37 K. Majumbar, S. Hershfield, Phys. Rev. B 1998, 57, 11 521. 38 X-ray diffraction measurements (XRD) were carried out using a STOE Stadi P goniometer with a Siemens Kristalloflex X-ray generator with a cobalt anticathode (λ = 1.7809 Å) driven by a personal computer through a DACO-MP interface. Citing Literature Volume11, Issue14October, 1999Pages 1198-1202 ReferencesRelatedInformation

Referência(s)