Artigo Revisado por pares

Bounded distributive lattices with strict implication

2005; Wiley; Volume: 51; Issue: 3 Linguagem: Inglês

10.1002/malq.200410022

ISSN

1521-3870

Autores

Sergio A. Celani, Ramón Jansana,

Tópico(s)

Rough Sets and Fuzzy Logic

Resumo

Mathematical Logic QuarterlyVolume 51, Issue 3 p. 219-246 Original Paper Bounded distributive lattices with strict implication Sergio Celani, Sergio Celani [email protected] Facultad de Ciencias Exactas, Universidad Nacional del Centro, Pinto, 399, 7000 Tandil, ArgentinaSearch for more papers by this authorRamon Jansana, Corresponding Author Ramon Jansana [email protected] Departamento de Lògica, Història i Filosofia de la Ciència, Universitat de Barcelona, Baldiri i Reixach s/n, 08028 Barcelona, SpainPhone: +34 933 333 466, Fax: +34 934 498 510Search for more papers by this author Sergio Celani, Sergio Celani [email protected] Facultad de Ciencias Exactas, Universidad Nacional del Centro, Pinto, 399, 7000 Tandil, ArgentinaSearch for more papers by this authorRamon Jansana, Corresponding Author Ramon Jansana [email protected] Departamento de Lògica, Història i Filosofia de la Ciència, Universitat de Barcelona, Baldiri i Reixach s/n, 08028 Barcelona, SpainPhone: +34 933 333 466, Fax: +34 934 498 510Search for more papers by this author First published: 18 March 2005 https://doi.org/10.1002/malq.200410022Citations: 41AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The present paper introduces and studies the variety WH of weakly Heyting algebras. It corresponds to the strict implication fragment of the normal modal logic K which is also known as the subintuitionistic local consequence of the class of all Kripke models. The tools developed in the paper can be applied to the study of the subvarieties of WH; among them are the varieties determined by the strict implication fragments of normal modal logics as well as varieties that do not arise in this way as the variety of Basic algebras or the variety of Heyting algebras. Apart from WH itself the paper studies the subvarieties of WH that naturally correspond to subintuitionistic logics, namely the variety of R-weakly Heyting algebras, the variety of T-weakly Heyting algebras and the varieties of Basic algebras and subresiduated lattices. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) References [1] M. Ardeshir, and W. Ruitenburg, Basic propositional calculus I. Math. Logic Quarterly 44, 317–343 (1998). [2] P. Blackburn, M. de Rijke, and Y. Venema, Modal Logic (Cambridge University Press, Cambridge 2001). [3] W. Blok, and D. Pigozzi, Algebraizable Logics. Memoirs of the American Mathematical Society, Vol. 396 (Amer. Math. Soc., Providence 1989). [4] W. Blok, and D. Pigozzi, On the structure of varieties with equationally definable principal congruences III. Algebra Universalis 32, 545–608 (1994). [5] W. Blok, and D. Pigozzi, Abstract algebraic logic and the deduction theorem. Bulletin of Symbolic Logic (to appear). [6] F. Bou, Strict-weak languages, an analysis of strict implication. PhD. dissertation, University of Barcelona 2004. [7] S. Burris, and H. P. Sankappanavar, A Course in Universal Algebra (Springer-Verlag, New York 1981). [8] S. Celani, and R. Jansana, A closer look at some subintuitionistic logics. Notre Dame J. Formal Logic 42, 225–255 (2003). [9] R. Cignoli, Distributive lattice congruences and Priestley spaces. In: Actas del primer congreso Antonio Monteiro, pp. 81–84 (Universidad Nacional del Sur, Bahía Blanca 1991). [10] R. Cignoli, S. Lafalce, and A. Petrovich, Remarks on Priestley duality for distributive lattices. Order 8, 299–315 (1991). [11] G. Corsi, Weak logics with strict implication. Z. Math. Logik Grundlagen Math. 33, 389–406 (1987). [12] J. Czelakowski, Protoalgebraic Logics (Kluwer Academic Publishers, Dordrecht 2001). [13] J. Czelakowski, and D. Pigozzi, Amalgamation and interpolation in abstract algebraic logic. In: Models, Algebras and Proof (X. Caicedo and H. C. Montenegro, eds.), pp. 187–265 (Marcel and Dekker, New York 1998). [14] B. A. Davey, and J. C. Galati, A coalgebraic view of Heyting duality. Studia Logica 75, 259–270 (2003). [15] B. A. Davey, and H. Priestley, Introduction to Lattices and Order (Cambridge University Press, Cambridge 1990). [16] K. D¡osen, Modal translations in K and D. In: Diamond and Defaults (M. de Rijke, ed.), pp. 103–127 (Kluwer Academic Publishers, Dordrecht 1993). [17] R. Dwinger, and R. Balbes, Distributive Lattices (University of Missouri Press, Columbia (MO) 1974). [18] G. Epstein, and A. Horn, Logics which are characterized by subresiduated lattices. Z. Math. Logik Grundlagen Math. 22, 199–210 (1976). [19] L. L. Esakia, Topological Kripke models. Soviet Math. Doklady 15, 147–151 (1974). [20] J. M. Font, R. Jansana, and D. Pigozzi, Fully adequate Gentzen systems and closure properties of the class of full models. Preprint 2000. [21] R. Goldblatt, Varieties of complex algebras. Annals Pure Appl. Logic 44, 173–242 (1989). [22] R. Goldblatt, Algebraic polymodal logic: A survey. J. IGPL 8, 393–450 (2000). [23] I. Hacking, What is strict implication? J. Symbolic Logic 28, 51–71 (1963). [24] P. R. Halmos, Algebraic logic I: Monadic Boolean algebras. Composition Mathematica 12, 217–249 (1955). [25] M. Kracht, Tools and Techniques in Modal Logic (Elsevier, Amsterdam 1999). [26] E. J. Lemmon, Algebraic semantics for modal logics I. J. Symbolic Logic 31, 46–65 (1966). [27] E. J. Lemmon, Algebraic semantics for modal logics II. J. Symbolic Logic 31, 191–218 (1966). [28] D. Makinson, Aspectos de la Lógica Modal. Notas de Lógica Matemática 28 (Universidad Nacional del Sur, Bahía Blanca 1971). [29] L. Maksimova, Craig's theorem in superintuitionistic logics and amalgamated varieties of pseudo-Boolean algebras. Algebra i Logika 16, 643–681 (1977). [30] A. Petrovich, Distributive lattices with an operator. Studia Logica 56, 205–224 (1996). [31] H. A. Priestley, Representation of distributive lattices by means of ordered Stone spaces. Bulletin London Math. Soc. 2, 186–190 (1970). [32] H. A. Priestley, Ordered topological spaces and the representation of distributive lattices. Proceedings London Math. Soc. (3) 24, 507–530 (1972). [33] H. A. Priestley, Stone lattices: a topological approach. Fund. Math. 84, 127–143 (1974). [34] W. Rautenberg, Klassische und nichtklassische Aussagenlogik (Friedrich Vieweg und Sohn, Braunschweig 1979). [35] M. de Rijke, and Y. Venema, Sahlqvist's theorem for Boolean algebras with operators with an application to cylindric algebras. Studia Logica 54, 61–78 (1995). [36] G. Restall, Subintuitionistic logics. Notre Dame J. Formal Logic 35, 116–129 (1994). [37] W. Ruitenburg, Constructive logic and paradoxes. Modern Logic 1, 271–301 (1991). [38] Y. Susuki, F. Wolter, and M. Zakharyaschev, Speaking about transitive frames in propositional languages. J. Logic, Language, and Information 7, 317–339 (1998). [39] A. Visser, A propositional logic with explicit fixed points. Studia Logica 40, 155–175 (1981). [40] A. Visser, Aspects of Diagonalization and Provability. PhD. dissertation, University of Utrech 1981. [41] H. Wansing, Displaying as temporalizing, sequent systems for subintuitionistic logics. In: Logic, Language and Computation (S. Akama, ed.), pp. 159–178 (Kluwer Academic Publishers, Dordrecht 1997). [42] F. Wright, Some remarks on Boolean duality. Portugaliae Math. 16, 109–117 (1957). Citing Literature Volume51, Issue3May 2005Pages 219-246 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX