New approaches to a classical theory of unimolecular reaction rate
1996; Wiley; Volume: 58; Issue: 6 Linguagem: Inglês
10.1002/(sici)1097-461x(1996)58
ISSN1097-461X
Autores Tópico(s)Protein Structure and Dynamics
ResumoInternational Journal of Quantum ChemistryVolume 58, Issue 6 p. 593-635 Theoretical and Computational Developments New approaches to a classical theory of unimolecular reaction rate Stuart A. Rice, Corresponding Author Stuart A. Rice Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637Search for more papers by this authorMeishan Zhao, Meishan Zhao Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637Search for more papers by this author Stuart A. Rice, Corresponding Author Stuart A. Rice Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637Search for more papers by this authorMeishan Zhao, Meishan Zhao Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637Search for more papers by this author First published: 1996 https://doi.org/10.1002/(SICI)1097-461X(1996)58:6 3.0.CO;2-TCitations: 10AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 O. K. Rice and H. C. Ramsperger, J. Am. Chem. Soc., 49, 1616 (1927). J. Am. Chem. Soc. 50, 617 (1928). L. S. Kassel, J. Phys. Chem., 32, 225 (1928). L. S. Kassel, in Kinetics of Homogeneous Gas Reactions (Reinhold, New York, 1932), Chap. 5. 2 R. A. Marcus and O. K. Rice, J. Phys. Colloid Chem., 55, 894 (1951). R. A. Marcus, J. Chem. Phys., 20, 359 (1952). G. M. Wieder and R. A. Marcus, J. Chem. Phys., 37, 1835 (1962). R. A. Marcus, J. Chem. Phys., 43, 2658 (1965). 3 See, e.g., P. J. Robinson and K. A. Holbrook, Unimolecular Reactions (Wiley-Interscience, London, 1972). W. Forst, Theory of Unimolecular Reactions (Academic Press, New York, 1973). K. J. Laidler, Chemical Kinetics, 3rd ed. (Harper & Row, New York, 1987). 4 M. J. Davis, J. Chem. Phys., 83, 1016 (1985). M. J. Davis, Chem. Phys. Lett., 110, 491 (1984). M. J. Davis and A. F. Wagner, in Resonances in Electron-Molecular Scattering, van der Waals Complexes, and Reactive Chemical Dynamics, ACS Symposium Series 263, D. G. Truhlar, Ed. (American Chemical Society, Washington, DC, 1984). 5 M. J. Davis and S. K. Gray, J. Chem. Phys., 84, 5389 (1986). 6 See, e.g., A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer-Verlag, New York, 1983). D. K. Arrowsmith and C. M. Place, An Introduction to Dynamical Systems (Cambridge University Press, Cambridge, 1990). 7 R. S. Mackay, J. D. Meiss, and I. C. Percival, Physica D, 13, 55 (1984). Physica D, 27, 1 (1987). D. Bensimon and L. P. Kadanoff, Physica D, 13, 65 (1984). I. Dana, N. V. Murray, and I. C. Percival, Phys. Rev. Lett., 62, 233 (1988). 8 See, e.g., J. Hale and H. Kocak, Dynamics and Bifurcations (Springer-Verlag, New York, 1991). G. M. Zaslavsky, Chaos in Dynamic Systems (Harwood, New York, 1985). G. M. Zaslavsky, R. Z. Sagdeev, D. A. Usikov, and A. A. Chernikov, Weak Chaos and Quasi-Regular Patterns (Cambridge University Press, New York, 1991). 9 S. K. Gray, S. A. Rice, and M. J. Davis, J. Phys. Chem., 90, 3470 (1986). 10 M. Zhao and S. A. Rice, J. Chem. Phys., 96, 3541 (1992). 11 M. Zhao and S. A. Rice, J. Chem. Phys., 96, 6654 (1992). 12 M. Zhao and S. A. Rice, J. Chem. Phys., 96, 7483 (1992). 13 S. Jang, M. Zhao, and S. A. Rice, J. Chem. Phys., 97, 8188 (1992). 14 M. Zhao and S. A. Rice, J. Chem. Phys., 97, 943 (1992). 15 M. Zhao and S. A. Rice, J. Chem. Phys., 98, 3824 (1993). 16 H. Tang, S. Jang, M. Zhao, and S. A. Rice, J. Chem. Phys., 101, 1 (1994). 17 S. Jang and S. A. Rice, J. Chem. Phys., 99, 9585 (1994). 18 V. I. Arnold, Dolk. Akad. Nauk SSSR, 156, 9 (1964). 19 D. Bensimon and L. P. Kadanoff, Physica D, 13, 82 (1984). 20 R. E. Gillilan and G. S. Ezra, J. Chem. Phys., 94, 2648 (1991). 21 S. K. Gray, S. A. Rice, and D. W. Noid, J. Chem. Phys., 84, 3745 (1986). 22 K. G. Kay, J. Chem. Phys., 65, 3813 (1976). 23 S. K. Gray and S. A. Rice, Faraday Discuss. Chem. Sci., 82, 307 (1986). 24 S. K. Gray, in Dynamics of Polyatomic van der Waals Complexes, N. Halberstardt and K. C. Janda, Eds. (Plenum Press, New York, 1990). 25 S. K. Gray and S. A. Rice, J. Chem. Phys., 83, 2818 (1985). 26 S. K. Gray and S. A. Rice, J. Chem. Phys., 86, 2020 (1987). 27 W. H. Miller, J. Chem. Phys., 54, 5386 (1971). 28 D. G. Truhlar, J. Chem. Phys., 53, 2041 (1970). B. C. Garrett and D. G. Truhlar, J. Chem. Phys., 84, 682 (1980). 29 W. H. Miller, N. C. Handy, and J. E. Adams, J. Chem. Phys., 72, 99 (1980). 30 W. H. Miller, in Potential Energy Surfaces and Dynamics Calculations, D. G. Truhlar, Ed. (Plenum, New York, 1981), p. 265. 31 S. A. Rice and M. Zhao, in Laser Techniques for State-Selected and State-to-State Chemistry II, J. W. Hepburn, Ed. (SPIE–The International Society for Optical Engineering, CA, 1994). 32 D. Lu, M. Zhao, and D. G. Truhlar, J. Compt. Chem., 12, 376 (1991). 33 D. Lu and D. G. Truhlar, J. Chem. Phys., 99, 2723 (1993). 34 G. Strang, Introduction to Applied Mathematics (Wellesley- Cambridge, Wellesley, 1990). 35 G. Arfken, Mathematical Methods for Physics, 3rd ed. (Academic Press, Orlando, Fl, 1985). 36 See, e.g., N. Makri, and W. H. Miller, J. Chem. Phys., 86, 1451 (1987). 37 W. Miller, in Potential Energy Surface and Dynamics Calculations, D. G. Truhlar, Ed. (Plenum Press, New York, 1981), p. 243. 38 See, e.g., B. C. Garrett and D. G. Truhlar, J. Phys. Chem., 86, 1136 (1982). 39 K. E. Johnson, L. Wharton, and D. G. Levy, J. Chem. Phys., 69, 2719 (1978). J. E. Kenny, K. E. Johnson, W. Shafin, and D. H. Levy, J. Chem. Phys., 72, 1109 (1980). 40 D. Carter and P. Brumer, J. Chem. Phys., 77, 4208 (1982). J. Chem. Phys. 78, 2104(E) (1983). 41 P. Gaspard and S. A. Rice, J. Phys. Chem., 93, 6947 (1989). 42 R. E. Gillilan and G. S. Ezra, J. Chem. Phys., 94, 2648 (1991). 43 A. M. Cortina, S. Miret-Artes, P. Villarreal, and G. Delgado-Barrio, J. Mol. Struct, 142, 513 (1986). E. de Pablo, S. Miret-Artes, P. Moreca, P. Villarreal, and G. Delgado-Barrio, J. Mol. Struct., 142, 503 (1986). G. Delgado-Barrio, P. Villarreal, P. Mareca, and G. Albelda, J. Chem. Phys., 78, 280 (1983). 44 J. A. Beswick and J. Jortner, Mol. Phys., 39, 1137 (1980). 45 E. E. Wozny and S. K. Gray, Ber. Buns. Phys. Chem., 92, 236 (1988). 46 D. M. Willberg, M. Gutmann, J. J. Breen, and A. H. Zewail, J. Chem. Phys., 96, 198 (1992). 47 J. J. Breen, D. M. Willberg, M. Gutmann, and A. H. Zewail, Chem. Phys. Lett., 93, 9180 (1990). 48 J. I. Cline, D. D. Evard, F. Thommen, and K. C. Janda, J. Chem. Phys., 84, 1165 (1986). 49 D. D. Evard, F. Thommen, J. I. Cline, and K. C. Janda, J. Chem. Phys., 91, 2508 (1987). J. I. Cline, N. Sivakumer, D. D. Evard, and K. C. Janda, J. Chem. Phys., 86, 1636 (1987). N. Halberstadt, J. A. Beswick, and K. C. Janda, J. Chem. Phys., 87, 3966 (1987). 50 J. I. Cline, N. Sivakumer, D. D. Evard, C. R. Bieler, B. P. Reid, N. Halberstadt, S. R. Hair, and K. C. Janda, J. Chem. Phys., 90, 2605 (1989). 51 J. M. Skene, J. C. Drobits, and M. I. Lester, J. Chem. Phys., 85, 2329 (1986). 52 R. L. Waterland, J. M. Skene, and M. I. Lester, J. Chem. Phys., 89, 7277 (1988). 53 J. M. Skene and M. I. Lester, Chem. Phys. Lett., 116, 93 (1985). 54 C. E. Wozny and S. K. Gray, Ber. Nunsenge. Phys. Chem., 92, 236 (1988). 55 S. K. Gray and C. E. Wozny, J. Chem. Phys., 91, 7671 (1991). S. K. Gray and C. E. Wozny, J. Chem. Phys., 94, 2816 (1991). 56 J. I. Cline, B. P. Reid, D. D. Evard, N. Sivalumer, N. Halberstadt, and K. C. Janda, J. Chem. Phys., 89, 3535 (1988). 57 D. H. Zhang and J. Z. H. Zhang, J. Chem. Phys., 95, 6449 (1991). 58 For a review, see, e.g., D. G. Truhlar, W. L. Hase, and J. T. Hynes, J. Phys. Chem., 87, 2664 (1983). 59 N. DeLeon and B. J. Berne, J. Chem. Phys., 75, 3495 (1981). 60 K. Fukui, S. Kato, and H. Fujimoto, J. Amer. Chem. Soc., 97, 1 (1975). H. F. Schaefer, Chem. Br., 11, 227 (1975). 61 See, e.g., D. G. Truhlar, A. D. Issacson, and B. C. Garrett, Theory of Chemical Reaction Dynamics, M. Baer, Ed. (CRC Press, Boca Raton, Fl, 1985), Part IV, p. 65. 62 G. A. Natanson, B. C. Garrett, T. N. Trung, T. Joseph, and D. G. Truhlar, J. Chem. Phys., 94, 7895 (1991). 63 D. Heidrich, W. Kliesch, and W. Quapp, Properties of Chemically Interesting Potential Energy Surfaces (Springer, Berlin, 1991). 64 W. H. Miller, N. C. Handy, and J. E. Adams, J. Chem. Phys., 72, 99 (1980). W. H. Miller, in Potential Energy Surfaces and Dynamics Calculations, D. G. Trular, Ed. (Plenum, New York, 1981), p. 265. 65 D. G. Truhlar, A. D. Issacson, and B. C. Garrett, in Theory of Chemical Reaction Dynamics, M. Baer, Ed. (CRC Press, Boca Raton, Fl, 1985), Part IV, p. 65. 66 N. DeLeon and B. J. Berne, J. Chem. Phys., 75, 3495 (1981). N. DeLeon, J. Chem. Phys., 96, 285 (1992). 67 N. DeLeon and C. C. Marston, J. Chem. Phys., 91, 3405 (1989). C. C. Marston and N. DeLeon, J. Chem. Phys., 91, 3392 (1989). 68 N. DeLeon, M. A. Mehta, and R. Q. Topper, J. Chem. Phys., 94, 8310, 8329 (1991). 69 M. A. Harthcock and J. Laane, J. Chem. Phys., 79, 2103 (1983). 70 J. Laane, M. A. Harthcock, P. M. Killough, L. E. Bauman, and J. M. Cooke, J. Mol. Spectrosc., 91, 286 (1982). 71 M. A. Harthcock and J. Laane, J. Mol. Spectrosc., 91, 300 (1982). 72 M. Peric, M. Mladenovic, S. Peyerimhoff, and R. Buenker, Chem. Phys., 82, 317 (1983). Chem. Phys. 86, 85 (1984). 73 K. K. Lehmann, G. J. Scherer, and W. Klemperer, J. Chem. Phys., 76, 6441 (1982). J. Chem. Phys., 77, 2853 (1982). J. Chem. Phys., 78, 608 (1983). D. Farrelly and W. P. Reinhardt, J. Chem. Phys., 78, 606 (1983). 74 B. A. Waite and W. H. Miller, J. Chem. Phys., 73, 3713 (1980). B. A. Waite, J. Phys. Chem., 88, 5076 (1984). 75 T. A. Holme and J. S. Hutchinson, J. Chem. Phys., 83, 2860 (1985). 76 M. Founargiotakis, S. C. Farantos, and J. Tennyson, J. Chem. Phys., 88, 1598 (1988). S. C. Farantos and M. Founargiotakis, Chem. Phys., 142, 345 (1990). 77 S. C. Farantos, J. M. Gomez Llorente, O. Hahn, and H. S. Taylor, Chem. Phys. Lett., 166, 71 (1990). S. C. Farantos, J. M. Gomez Llorente, O. Hahn, and H. S. Taylor, Chem. Phys., 93, 76 (1990). Chem. Phys. 94, 2376 (1991). 78 S. K. Gray, W. H. Millar, Y. Yamaguchi, and H. F. Schaefer III, J. Chem. Phys., 73, 2733 (1980). 79 Z. Bacic, R. B. Gerber, and M. A. Ratner, J. Phys. Chem., 90, 3606 (1986). Z. Bacic and J. C. Light, J. Chem. Phys., 86, 3065 (1987). J. C. Light and Z. Bacic, J. Chem. Phys. 87, 4008 (1987). M. Mladenovic and Z. Bacic, J. Chem. Phys. 93, 3039 (1990). 80 V. Szalay, J. Chem. Phys., 92, 3633 (1990). 81 S. C. Ross and P. R. Bunker, J. Mol. Spectrosc., 105, 369 (1984). S. C. Ross and P. R. Bunker, J. Mol. Spectrosc., 101, 199 (1983). R. S. Smith, R. B. Shirts, and C. W. Patterson, J. Chem. Phys., 86, 4452 (1987). P. R. Fleming and J. S. Hutchinson, J. Chem. Phys., 90, 1735 (1989). S. Carter, N. C. Handy, and I. M. Mills, Philos. Trans. R. Soc. Lond. A, 332, 121 (1990). A. B. McCoy and E. L. Sibert III, J. Chem. Phys., 95, 3476 (1991). 82 B. Gazdy and J. M. Bowman, J. Chem. Phys., 95, 6309 (1991). J. A. Bentley, J. M. Bowman, B. Gazdy, T. J. Lee, and C. E. Dateo, Chem. Phys. Lett., 198, 563 (1992). B. L. Lan and J. M. Bowman, J. Phys. Chem., 97, 12535 (1993). 83 J. N. Murrell, S. Carter, and L. O. Halonen, J. Mol. Spectrosc., 93, 307 (1982). 84 W. H. Miller, J. Chem. Phys., 61, 1823 (1974). W. H. Miller, S. Schwartz, and J. W. Tromp, J. Chem. Phys., 79, 4889 (1983). 85 T. Yamamoto, J. Chem. Phys., 33, 281 (1960). 86 P. G. Wolynes, Phys. Rev. Lett, 47, 968 (1981). 87 T. J. Park and J. C. Light, J. Chem. Phys., 95, 5870 (1986). J. Chem. Phys. 88, 4897 (1988). J. Chem. Phys., 91, 974 (1989). J. Chem. Phys., 94, 2946 (1991). 88 D. Brown and J. C. Light, J. Chem. Phys., 97, 5465 (1992). 89 R. E. Wyatt, Chem. Phys., Lett., 121, 301 (1985). 90 P. N. Day and D. G. Truhlar, J. Chem. Phys., 94, 2045 (1990). 91 S. L. Mielke, G. C. Lynch, D. G. Truhlar, and D. W. Schwenke, Chem. Phys. Lett., 216, 441 (1993). 92 T. Seideman and W. H. Miller, J. Chem. Phys., 95, 1768 (1991). J. Chem. Phys., 97, 2499 (1992). 93 E. Merzbacher, Quantum Mechanics, 2nd ed. (Wiley, New York, 1970), p. 83. 94 K. S. J. Nordholm and S. A. Rice, J. Chem. Phys., 62, 157 (1975). 95 M. Thachuk and G. C. Schatz, J. Chem. Phys., 101, 6577 (1994). Citing Literature Volume58, Issue61996Pages 593-635 ReferencesRelatedInformation
Referência(s)