Novel metal-chelate affinity adsorbent for purification of immunoglobulin-G from human plasma
2003; Elsevier BV; Volume: 795; Issue: 1 Linguagem: Inglês
10.1016/s1570-0232(03)00550-6
ISSN1873-376X
AutoresAdil Deni̇zli̇, Murat Alkan, Bora Gari̇pcan, Serpil Özkara, Erhan Pişkın,
Tópico(s)Microfluidic and Bio-sensing Technologies
ResumoMetal-chelating ligand and/or comonomer 2-methacrylolyamidohistidine (MAH) was synthesized by using methacryloyl chloride and L-histidine methyl ester. MAH was characterized by NMR and FTIR. Spherical beads with an average diameter of 75-125 microm were produced by suspension polymerization of methylmethacrylate (MMA) and MAH carried out in an aqueous dispersion medium. Poly(MMA-MAH) beads had a specific surface area of 37.5 m(2)/g. Poly(MMA-MAH) beads were characterized by water uptake studies, FTIR, SEM and elemental analysis. Elemental analysis of MAH for nitrogen was estimated as 34.7 microM/g of polymer. Then, Cu(2+) ions were chelated on the beads. Cu(2+)-chelated beads with a swelling ratio of 38% were used in the adsorption of human-immunoglobulin G (HIgG) from both aqueous solutions and human plasma. The maximum adsorption capacities of the Cu(2+)-chelated beads were found to be 12.2 mg/g at pH 6.5 in phosphate buffer and 15.7 mg/g at pH 7.0 in MOPS. Higher adsorption value was obtained from human plasma (up to 54.3 mg/g) with a purity of 90.7%. The metal-chelate affinity beads allowed one-step separation of HIgG from human plasma. The adsorption-desorption cycle was repeated 10 times using the same beads without noticeable loss in their HIgG adsorption capacity.
Referência(s)