Artigo Revisado por pares

On the lunar origin of tektites

1963; American Geophysical Union; Volume: 68; Issue: 14 Linguagem: Inglês

10.1029/jz068i014p04305

ISSN

2156-2202

Autores

Dean R. Chapman, H. K. Larson,

Tópico(s)

Space Exploration and Technology

Resumo

Journal of Geophysical Research (1896-1977)Volume 68, Issue 14 p. 4305-4358 On the lunar origin of tektites Dean R. Chapman, Dean R. ChapmanSearch for more papers by this authorHoward K. Larson, Howard K. LarsonSearch for more papers by this author Dean R. Chapman, Dean R. ChapmanSearch for more papers by this authorHoward K. Larson, Howard K. LarsonSearch for more papers by this author First published: 15 July 1963 https://doi.org/10.1029/JZ068i014p04305Citations: 98AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract The experimental facilities and analytical methods of atmosphere entry aerodynamics have been applied to the study of tektites. Hypervelocity ablation experiments in the laboratory have reproduced the same surface sculptures, geometric relationships, systematic stria distortions, and coiled circumferential flanges as those found on tektites from Australia, The aerodynamic evidence demonstrates that the javanites and australites were twice melted, the second time by aerodynamic heating of rigid tektite glass during atmosphere entry. Experiments conducted on molten glass ejected into the atmosphere at various viscosities and velocities show that the primary australites were formed in an environment in which the atmosphere density was many orders of magnitude less than that at the earth's surface; this contradicts the hypothesis of tektite origin from the earth or other atmosphere-shrouded planets. Modern calculation methods for aerodynamic ablation are shown to be in good agreement with various laboratory experiments and with an entry flight experiment. From the amount of ablation, the distortion of striae, and the spacing between ring waves on australites, entry trajectories have been determined. The moon is the only known celestial body of origin compatible with these trajectories. The distribution of chemical elements in tektites, earth crust, meteorites, and other cosmic bodies is compared, and a brief discussion is given of the chemical differentiation of the lunar crust to which the over-all evidence points. References Adams, Ernst W., Theoretical investigations of the ablation of a glass-type heat protection shield of varied material properties at the stagnation point of a re-entering IRBMNASA Tech. Note D-564, 1961. Adams, Ernst W., Robert M. Huffaker, Application of ablation analysis to stony meteorites and the tektite problem, Nature, 193(4822), 1249– 1251, 1962a. Adams, Ernst W., Robert M. Huffaker, Aerodynamic analysis of tektites and their parent bodiesNASA Tech. Rept. R-149, 1962b. Adams, Mac C., William E. Powers, Steven Georgiev, An experimental and theoretical study of quartz ablation at the stagnation point, J. Aerospace Sci., 27(7), 535– 543, 1960. Aller, Lawrence H., The abundance of the elements in the sun and stars, Encyclopedia of Physics, 51 324– 352, Springer Verlag, Berlin, 1958. Anders, E., The record in meteorites, 2, On the presence of aluminum-26 in meteorites and tektites, Geochim. Cosmochim. Acta, 19, 53– 62, 1960. Baker, George, The flanges of australites (tektites), Mem. Natl. Museum, Victoria, 14(1), 7– 22, 1944. Baker, George, Curvature-size relationships of Port Campbell australites, Victoria, Proc. Roy. Soc. Victoria, 67, 165– 219, 1955. Baker, George, Nirranda strewnfield australites, south-east of Warnambool, Western Victoria, Mem. Natl. Museum, Victoria, 20, 59– 172, 1956. Baker, George, The role of aerodynamical phenomena in shaping and sculpturiag Australian tektites, Am. J. Sci., 256, 369– 383, 1958. Baker, George, Tektites, Mem. Natl. Museum, Victoria, 23, 1– 313, 1959. Baker, George, Origin of tektites, Nature, 185, 291– 294, 1960. Baker, George, A perfectly developed hollow australite, Am. J. Sci., 259, 791– 800, 1961. Baker, George, Volumenbeziehungen von Wohlerhaltenen Australit-Knöpfen, -Linsen, und -Kernen zu ihren primären Formen, Chem. Erde., 21(3/4), 269– 320, 1962a. Baker, George, The largest known australite and three smaller specimens from Warralakin, Western Australia, J. Roy. Soc. W. Australiapart 1), 12– 17, 1962b. Baker, George, H. C. Forster, The specific gravity relationships of australites, Am. J. Sci., 241(6), 377– 406, 1943. Baldwin, J. E., Thermal radiation from the moon and the heat flow through the lunar surface, Monthly Notices Roy. Astron. Soc., 122(6), 513– 522, 1961. Barnes, Virgil E., North American tektites, Univ. Tex. Publ., Contrib. Geol., part 2, 477– 582, 1939. Barnes, Virgil E., Significance of inhomogeneity in tektites, Rept. Intern. Geol. Congr., 21st Session, Norden, part 12, Copenhagen, Denmark, 1960. Barnes, Virgil E., Tektites, Sci. Am., 205(5), 36and 58–65, 1961. Beck, Richard, Über die in Tektiten eingeschlossen en Gase, Z. Deut. Geol. Ges., 62, 242– 245, 1910. Bethe, Hans A., Mac C. Adams, A theory for the ablation of glassy materials, J. Aerospace Sci., 26(6), 321– 328350, 1959. Beyer, H. Otley, Philippine tektites and the tektite problem in generalSmithsonian Inst. Ann. Rept., 1942, 253– 259, 1942. Buddhue, John D., The abundance of chemical elements in meteorites and tektites, Popular Astron., 54, 308– 311, 1946. Cassidy, William A., Australite investigations and their bearing on the tektite problem, Meteoritics, 1(4), 426– 437, 1956. Chao, E. C. T., Isidore Adler, Edward J. Dwornik, Janet Littler, Metallic spherules in tektites from Isabela, Philippine Islands, Science, 135(3498), 97– 98, 1962. Chapman, Dean R., An analysis of base pressure at supersonic velocities and comparison with experimentNASA Tech. Rept. 1051, 1951. Chapman, Dean R., An approximate analytic method for studying entry into planetary atmospheresNASA Tech. Rept. R-11, 1959. Chapman, Dean R., Recent re-entry research and the cosmic origin of tektites, Nature, 188(4748), 353– 355, 1960. Chapman, Dean R., Howard K. Larson, The lunar origin of tektitesNASA Tech. Note D-1556, 1963. Chapman, Dean R., Howard K. Larson, Lewis A. Anderson, Aerodynamic evidence pertaining to the entry of tektites into the earth's atmosphereNASA Tech. Rept. R-134, 1962. Cohen, A. J., The absorption spectra of tektites and other natural glasses, Geochim. Cosmochim. Acta, 16, 279– 286, 1958. Cohen, A. J., A Semiquantitative asteroid impact hypothesis of tektite origin (abstract), J. Geophys. Res., 66(8), 2521, 1961. Darwin, Charles, Geological Observations on the Volcanic Islands and Parts of South America Visited during the Voyage of H. M. S. Beagle, pp. 44– 45, 1844 (republication by Appleton and Co., New York, 1891). Denardo, B. Pat, Measurements of momentum transfer from plastic projectiles to massive aluminum targets at speeds up to 25,600 feet per secondNASA Tech. Note D-1210, 1962. Detra, R. W., N. H. Kemp, F. R. Riddell, Addendum to heat transfer to satellite vehicles re-entering the atmosphere, Jet Propulsion, 27(12), 1256– 1257, 1957. Fay, J. A., F. R. Riddell, Theory of stagnation point heating transfer in dissociated air, J. Aerospace Sci., 25, 73, 1958. Fenner, Charles, Australites, 1, Classification of the W. H. C. Shaw collection, Trans. Roy. Soc. S. Australia, 58, 62– 79, 1934. Fenner, Charles, Australites, 3, A contribution to the problem of the origin of tektites, Trans. Roy. Soc. S. Australia, 62, 192– 216, 1938. Ferri, Antonio, Victor Zakkay, Measurements of stagnation point heat transfer at low Reynolds' numbers, J. Aerospace Sci., 29(7), 847– 850, 1962. Fledderman, R. G., H. Hurwicz, Transient ablation and heat-conduction phenomena at a vaporizing surfaceAvco Tech. Rept. RAD TR-9(7)-60-9, 1960. Friedman, Irving, The water, deuterium, gas, and uranium content of tektites, Geochim. Cosmochim. Acta, 14, 316– 322, 1958. Friedman, Irving, Arthur Thorpe, F. E. Senftle, Comparison of the chemical composition and magnetic properties of tektites and glasses formed by fusion of terrestrial rocks, Nature, 187, 1089– 1092, 1960. Gardon, Robert, A review of radiant heat transfer in glass, J. Am. Ceram. Soc., 44(7), 305– 312, 1961. Gault, Donald E., Eugene M. Shoemaker, Henry J. Moore, Spray ejected from the lunar surfaceNASA Tech. Note D-1767, 1962. Gentner, W., J. Zähringer, Das Kalium-Argon-Alter von Tektiten, Z. Naturforsch., 152(2), 93– 99, 1960. Gentner, W., H. J. Lippolt, O. A. Schaeffer, Kalium-Argon-Alter der Gläser des Nördlinger Rieses und der böhmischmährischen tektite, Max-Planck-Inst. Kernphysik Rept, 1962. Georgiev, S., Unsteady ablationAvco Res. Rept. 94, 1959. Giraud, A., Characteristics of the moon's surface layer: an analysis of its radio emission, Astrophys. J., 135(1), 175– 186, 1962. Goldberg, L., E. A. Müller, L. H. Aller, The abundance of the elements in the solar atmosphere, Astrophys. J., Suppl. Ser. 45, 5, 1– 138, 1960. Grant, Kerr, Obsidianties: their origin from a physical standpoint, Proc. Roy. Soc. Victoria, 21(part 2), 444– 448, 1909. Hardcastle, H., The origin of australites: Plastic sweepings of a meteorite, New Zealand J. Sci. Technol., 8(2), 65– 75, 1926. Hayes, Wallace D., Ronald F. Probstein, Hypersonic Flow Theory, Academic Press, New York, 1959. Hidalgo, Henry, A theory of ablation of glassy material around blunt bodies of revolution, J. Am. Rocket Soc., 30(9), 806– 814, 1960. Hidalgo, Henry, Leo P. Kadanoff, Comparison between theory and flight ablation data, Am. Inst. Aeron. Astronautics, 1(1), 41– 45, 1963. Kadanoff, Leo P., Radiative transport within an ablating body, J. Heat Transfer, 83, 215– 225, 1961. Kohman, Truman P., Are tektites extra-solar-system meteorites, Nature, 182, 252– 253, 1958. Kourganoff, V., Basic Methods in Transfer Problems, Clarendon Press, Oxford, 1962. Krinov, E. L., Some considerations on tektites, Geochim. Cosmochim. Acta, 14, 259– 266, 1958. Krinov, E. L., Principles of Meteoritics, Pergamon Press, New York, 1960. Lacroix, M. A., Les tectites de l'Indochine, Arch. Museum Hist. Nat., Paris, [6], 8, 139– 240, 1932. Landau, H. G., Heat conduction in a melting solid, Quart. Appl. Math., 8, 81– 94, 1950. Lane, W. R., H. L. Green, The mechanics of drops and bubbles, Surveys in Mechanics, 162– 215, Cambridge University Press, London, 1956. Linck, G., Oberfläche und Herkunft der Meteorischen Gläser (Tektite), Neues Jahrb. Mineral., 57 Beilage-Band, Abt. A, 223– 236, 1928. Lotkin, Mark, The calculation of heat flow in melting solids, Quart. Appl. Math., 18, 79– 85, 1960. Margarvey, R. H., B. W. Taylor, Free fall breakup of large drops, J. Appl. Phys., 27, 1129– 1135, 1956. Mason, Brian, Principles of Geochemistry 2nd edition, John Wiley & Sons, New York, 1958. Moore, E. S., 'Pelée's Tears' and their bearing on the origin of australites, Bull. Geol. Soc. Am., 27, 51– 55, 1916. Morey, George W., The Properties of Glass, Reinhold Publishing Corporation, New York, 1954. Nininger, H. H., The moon as a source of tektites, 2, Sky and Telescope, 2(5), 8– 9, 1943. Nininger, H. H., Indo-chinites in South Vietnam, Arizona Acad. Sci., J., 1, 123– 134, 1961. O'Keefe, John A., The origin of tektites, Space Research, Proc. Intern. Space Sci. Symp., 1st, Nice, 1960, 1080– 1105North-Holland Publishing Company, Amsterdam, 1960. Pinson Jr., W. H., Chemical and physical studies of tektitesMass. Inst. Tech. Rept. AFCRL-62-221, 1962. Rankama, Kalervo, Isotope Geology, Pergamon Press, New York, 1954. Russell, H. N., R. S. Dugan, J. Q. Stewart, Astronomy , 4, The Solar System, Ginn and Company, Boston, 1945. Scala, S. M., A study of hypersonic ablation10th Intern. Astronautical CongrLondonAugust 29 to September 5, 1959. Sedov, L. I., Similarity and Dimensional Methods in Mechanics, Academic Press, New York, 1959. Spencer, L. J., Origin of tektites, Nature, 132, 571, 1933a. Spencer, L. J., Origin of tektites, Nature, 131, 117– 118, 1933b. Stair, Ralph, Tektites and the lost planet, Smithsonian Inst. Ann. Rept1954, 217– 230, 1954. Stelzner, Alfred W., Uber Eigenthumliche Obsidian-Bomben aus Australia, Z. Deut. Geol. Ges., 45, 299– 319, 1893. Suess, H. E., Gas content and age of tektites, Geochim. Cosmochim. Acta, 2, 76– 79, 1951. Suess, H. E., H. C. Urey, Abundances of the elements, Rev. Mod. Phys., 28(1), 53– 74, 1956. Sutton, George W., The hydrodynamics and heat conduction of a melting surface, J. Aerospace Sci., 25(1), 29– 3236, 1958. Taylor, Hugh P., Samuel Epstein, Oxygen isotope studies on the origin of tektites, J. Geophys. Res., 67(11), 4485– 4490, 1962. Taylor, S. R., Distillation of alkali elements during formation of australite flanges, Nature, 189, 630– 633, 1961. Taylor, S. R., M. Sachs, Trace elements in australites, Nature, 188, 387– 388, 1960. Troitski, V. S., Some results of the moon exploration by radiophysical methodsSpace Research, Proc. Intern. Space Sci. Symp., 3rd, Washington. 1962North-Holland Publishing CompanyAmsterdam, 1962. Urey, Harold C., On the origin of tektites, Proc. Natl. Acad. Sci., 41(1), 27– 31, 1955. Urey, Harold C., The origin of tektites, Nature, 179(4559), 556– 557, 1957. Urey, Harold C., Composition of the moon's surface, Z. Physik. Chem. Neue Folge, 16, 346– 357, 1958. Urey, Harold C., Origin of tektites, Science, 137, 746– 747, 1962. Verbeek, R. D. M., Glaskögels vanBilliton, Jaahrboek van het Mijnwesen in Nederlandish Oostindie, Amsterdam 20, Jahrg., p. 235, 1897. Viste, Elizabeth, Edward Anders, Cosmic-ray exposure history of tektites, J. Geophys. Res., 67, 2913– 2919, 1962. vonKoenigswald, G. H. R., Tektite studies, Koninkl. Ned. Akad. Wetenschap. Proc., B, 63, 135– 153, 1960. Walcott, R. H., The occurrence of so-called obsidian bombs in Australia, Proc. Roy. Soc. Victoria, 11(part I), 23– 53, 1898. Whipple, Fred L., Robert F. Hughes, On the velocities and orbits of meteors, fireballs, and meteorites, J. Atmospheric Terrest. Phys., Spec. Suppl., 2, 149– 156, 1955. Yee, Layton, Harry E. Bailey, Henry T. Woodward, Ballistic range measurements of stagnation-point heat transfer in air and in carbon dioxide at velocities to 18,000 feet per secondNASA Tech. Note D-777, 1961. Citing Literature Volume68, Issue1415 July 1963Pages 4305-4358 ReferencesRelatedInformation

Referência(s)