A Remark on Parabolic Smoothing and the Finite Element Method
1980; Society for Industrial and Applied Mathematics; Volume: 17; Issue: 1 Linguagem: Inglês
10.1137/0717005
ISSN1095-7170
Autores Tópico(s)Electromagnetic Simulation and Numerical Methods
ResumoPrevious article Next article A Remark on Parabolic Smoothing and the Finite Element MethodLars B. WahlbinLars B. Wahlbinhttps://doi.org/10.1137/0717005PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract The extent to which the finite element method takes advantage of the smoothing property in parabolic problems is discussed. In particular, the effect of numerical integration is considered.[1] Garth A. Baker, , James H. Bramble and , Vidar Thomée, Single step Galerkin approximations for parabolic problems, Math. Comp., 31 (1977), 818–847 56:7252 0378.65061 CrossrefISIGoogle Scholar[2] J. H. Bramble and , S. Hilbert, Bounds for a class of linear functionals with applications to Hermite interpolation, Numer. Math., 16 (1970/1971), 362–369 44:7704 0214.41405 CrossrefISIGoogle Scholar[3] J. H. Bramble, , A. H. Schatz, , V. Thomée and , L. B. Wahlbin, Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations, SIAM J. Numer. Anal., 14 (1977), 218–241 10.1137/0714015 56:7231 0364.65084 LinkISIGoogle Scholar[4] Philip Brenner, , Vidar Thomée and , Lars B. Wahlbin, Besov spaces and applications to difference methods for initial value problems, Springer-Verlag, Berlin, 1975ii+ 154pp, Lecture Notes in Mathematics 434 57:1106 0294.35002 CrossrefGoogle Scholar[5] Carl de Boor, On the local spline approximation by moments, J. Math. Mech., 17 (1967/1968), 729–735 36:6850 0162.08402 ISIGoogle Scholar[6] J. Douglas, Jr., , T. Dupont and , L. B. Wahlbin, Optimal $L\sb{\infty }$ error estimates for Galerkin approximations to solutions of two-point boundary value problems, Math. Comp., 29 (1975), 475–483 51:7298 0306.65053 ISIGoogle Scholar[7] Jim Douglas, Jr., , Todd Dupont and , Lars Wahlbin, The stability in $L\sp{q}$ of the $L\sp{2}$-projection into finite element function spaces, Numer. Math., 23 (1974/75), 193–197 52:4669 0297.41022 CrossrefISIGoogle Scholar[8] H.-P. Helfrich, Fehlerabschätzungen für das Galerkinverfahren zur Lösung von Evolutionsgleichungen, Manuscripta Math., 13 (1974), 219–235 50:8983 0323.65037 CrossrefISIGoogle Scholar[9] M. L. Juncosa and , D. M. Young, On the Crank-Nicolson procedure for solving parabolic partial differential equations, Proc. Cambridge Philos. Soc., 53 (1957), 448–461 19,583c 0079.33804 CrossrefGoogle Scholar[10] H. O. Kreiss, , V. Thomée and , O. Widlund, Smoothing of initial data and rates of convergence for parabolic difference equations, Comm. Pure Appl. Math., 23 (1970), 241–259 40:5160 0188.41001 CrossrefISIGoogle Scholar[11] Vidar Thomée, C. de Boor, Some convergence results for Galerkin methods for parabolic boundary value problems, Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, 55–88. Publication No. 33 58:31890 0343.65046 Google Scholar[12] Vidar Thomée, A. K. Aziz, Spline approximation and difference schemes for the heat equationThe mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972), Academic Press, New York, 1972, 711–746 53:7077 0279.65078 CrossrefGoogle Scholar[13] V. Thomée and , L. B. Wahlbin, Convergence rates of parabolic difference schemes for non-smooth data, Math. Comp., 28 (1974), 1–13 49:6635 0282.65070 CrossrefISIGoogle Scholar[14] L. B. Wahlbin, Maximum norm error estimates in the finite element method with isoparametric quadratic elements and numerical integration, RAIRO Anal. Numér., 12 (1978), 173–202, v 58:19236 0932.65103 Google Scholar Previous article Next article FiguresRelatedReferencesCited ByDetails High-order ADI finite difference schemes for parabolic equations in the combination technique with application in financeJournal of Computational and Applied Mathematics, Vol. 316 | 1 May 2017 Cross Ref Smoothing schemes for reaction-diffusion systems with nonsmooth dataJournal of Computational and Applied Mathematics, Vol. 223, No. 1 | 1 Jan 2009 Cross Ref Smoothing with positivity-preserving Padé schemes for parabolic problems with nonsmooth dataNumerical Methods for Partial Differential Equations, Vol. 21, No. 3 | 29 September 2004 Cross Ref Local behavior in finite element methodsFinite Element Methods (Part 1) | 1 Jan 1991 Cross Ref The Finite Element Method for Parabolic ProblemsMathematical Theory of Finite and Boundary Element Methods | 1 Jan 1990 Cross Ref Error estimates for spatially discrete approximations of semilinear parabolic equations with nonsmooth initial dataMathematics of Computation, Vol. 49, No. 180 | 1 January 1987 Cross Ref On the Smoothing Property of the Galerkin Method for Parabolic EquationsMitchell Luskin and Rolf RannacherSIAM Journal on Numerical Analysis, Vol. 19, No. 1 | 17 July 2006AbstractPDF (1252 KB)Fast Numerical Solution of Time-Periodic Parabolic Problems by a Multigrid MethodWolfgang HackbuschSIAM Journal on Scientific and Statistical Computing, Vol. 2, No. 2 | 16 May 2012AbstractPDF (781 KB) Volume 17, Issue 1| 1980SIAM Journal on Numerical Analysis History Submitted:26 January 1979Published online:17 July 2006 InformationCopyright © 1980 Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/0717005Article page range:pp. 33-38ISSN (print):0036-1429ISSN (online):1095-7170Publisher:Society for Industrial and Applied Mathematics
Referência(s)