Revisão Acesso aberto Revisado por pares

PHTHALOCYANINES AS PHOTOSENSITIZERS IN BIOLOGICAL SYSTEMS AND FOR THE PHOTODYNAMIC THERAPY OF TUMORS

1986; Wiley; Volume: 43; Issue: 6 Linguagem: Inglês

10.1111/j.1751-1097.1986.tb05648.x

ISSN

1751-1097

Autores

John D. Spikes,

Tópico(s)

Biocrusts and Microbial Ecology

Resumo

Photochemistry and PhotobiologyVolume 43, Issue 6 p. 691-699 Free Access PHTHALOCYANINES AS PHOTOSENSITIZERS IN BIOLOGICAL SYSTEMS AND FOR THE PHOTODYNAMIC THERAPY OF TUMORS John D. Spikes, John D. Spikes Department of Biology University of Utah Salt Lake City UT 84112, USASearch for more papers by this author John D. Spikes, John D. Spikes Department of Biology University of Utah Salt Lake City UT 84112, USASearch for more papers by this author First published: June 1986 https://doi.org/10.1111/j.1751-1097.1986.tb05648.xCitations: 408AboutSectionsPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinked InRedditWechat Abbreviations: PDT photodynamic therapy HPD hematoporphyrin derivative PC phthalocyanine TSPC tetrasulfophthalocyanine SPC sulfonated phthalocyanine CTAB cetyltrimethylammonium bromide EDTA ethylenediaminetetraacetate PBS phosphate buffered saline REFERENCES Barltrop, J., B. B. Martin and D. F. Martin (1983) Ptychodiscus brevis as a model system for photo-dynamic action. Microbios 37, 95– 103. Web of Science®Google Scholar Ben-Hur, E. and I. Rosenthal (1985) The phthalocy-anines: a new class of mammalian cell photosensitizers with a potential for cancer phototherapy. Int. J. Radiat. Biol. 47, 145– 147. CrossrefCASPubMedWeb of Science®Google Scholar Ben-Hur, E. and I. Rosenthal (1985) Photosensitized inactivation of Chinese hamster cells by phthalocyanines. Photochem. Photobiol. 42, 129– 133. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Ben-Hur, E. and I. Rosenthal (1985) Factors affecting the photokilling of cultured Chinese hamster cells by phthalocyanines. Radiat. Res. 103, 403– 409. CrossrefCASPubMedWeb of Science®Google Scholar Ben-Hur, E., A. Carmichael, P. Riesz and I. Rosenthal (1985) Photochemical generation of super-oxide radical and the cytotoxicity of phthalocyanines. Int. J. Radiat. Biol. 47, 837– 846. CrossrefWeb of Science®Google Scholar Ben-Hur, E. and I. Rosenthal (1986) Action spectrum (600–700 nm) for chloroaluminum phthalocyanine-induced phototoxicity in Chinese hamster cells. Lasers in Life Sciences. In press. Google Scholar Bernauer, K. and S. Fallab (1961) Phthalocyanine in wasseriger Losung I. Helv. Chim. Acta 44, 1287– 1292. Wiley Online LibraryCASWeb of Science®Google Scholar Bown, S. G., J. Wieman, C. J. Tralau, C. Collins, P. R. Salmon and C. G. Clark (1985) Focal necrosis in liver and a fibrosarcoma in rats produced by photodynamic therapy. Gut 26, 563A– 564A (Abstract). Google Scholar Brasseur, N., H. Ali, D. Autenrieth, R. Langlois and J. E. Van Lier (1985) Biological activities of phthalocy-anines-III. Photoinactivation of V-79 Chinese hamster cells by tetrasulfophthalocyanines. Photochem. Phofobiol. 42, 515– 521. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Chan, W-S., R. Svensen, D. Phillips and I. R. Hart (1986) Cell uptake, distribution and response to aluminium chloro sulphonated phthalocyanine, a potential anti-tumour photosensitizer. Br. J. Cancer. 53, 255– 264. CrossrefCASPubMedWeb of Science®Google Scholar Darwent, J. R., I. McCubbin and D. Phillips (1982a) Excited singlet and triplet state electron-transfer reactions of aluminium (III) sulphonated phthalocyanines. J. Chem. Soc., Farad. Trans. 2, 78, 347– 357. CrossrefGoogle Scholar Darwent, J. R., I. McCubbin and G. Porter (1982b) Photoreduction of methyl viologen sensitized by sulphon-ated phthalocyanines in micellar solutions. J. Chem. Soc., Farad. Trans. 2, 78, 903– 910. CrossrefGoogle Scholar Darwent, J. R., P. Douglas, A. Harriman, G. Porter and M.-C. Richoux (1982c) Metal phthalocyanines and porphyrins as photosensitizers for reduction of water to hydrogen. Coor. Chem. Rev. 44, 83– 126. CrossrefCASWeb of Science®Google Scholar Dougherty, T. J. (1984) An overview of the status of photoradiation therapy. In Porphyrin Localization and Treatment of Tumors (Edited by D. R. Doiron and C. J. Gomer), pp. 75– 87. Alan R. Liss, New York . Google Scholar Dougherty, T. J. (1985) Photodynamic therapy. In Photodynamic Therapy of Tumors and Other Diseases (Edited by G. Jori and C. Perria), pp. 267– 279. Libreria Progetto, Padova . Web of Science®Google Scholar Foote, C. S. (1982) Light, oxygen, and toxicity. In Pathology of Oxygen (Edited by A. P. Autor), pp. 21– 44. Academic Press, New York . Google Scholar Frigerio, N. A. (1962) Metal phthalocyanines. U.S. Patent No. 3,027,391 (Patented Mar. 27, 1962). Google Scholar Harbour, J. R. and M. L. Hair (1978) Photoinduced electron transfer reactions in phthalocyanine dispersions. Photochem. Photobiol. 28, 721– 727. Wiley Online LibraryCASWeb of Science®Google Scholar Harbour, J. R., J. Tromp and M. L. Hair (1980) Photochemistry in organic pigment dispersions. Phtha-locyanine-mediated photoproduction of hydrogen peroxide. J. Am. Chem. Soc. 102, 1874– 1876. CrossrefCASWeb of Science®Google Scholar Harriman, A. and M-C. Richoux (1980) Attempted photoproduction of hydrogen using sulphothalocyanines as chromophores for three-component systems. J. Chem. Soc. Farad. 2, 76, 1618– 1626. CrossrefWeb of Science®Google Scholar Jori, G., G. M. Garbo, E. Reddi and I. Cozzani (1984) Modulation of the photosensitizing efficiency of porphyrins by their asSociation with liposomes. Med. Biol. Environ. 12, 489– 496. Google Scholar Joris, I., U. DeGirolami, K. Wortham and G. Majno (1982) Vascular labelling with Monastral blue B. Stain Technol. 57, 177– 183. CrossrefPubMedWeb of Science®Google Scholar Kapinus, E. I., M. M. Aleksankina, V. P. Staryi, V. I. Boghillo and I.I. Dilung (1985) Life time of the triplet exiplexes of porphyrins with electron acceptors in toluene solution. J. Chem. Soc., Farad. Trans. 2, 81, 631– 642. CrossrefGoogle Scholar Kessel, D. (1985) Proposed structure of the tumor-localizing component of “hematoporphyrin derivative”. In Photodynamic Therapy of Tumors and Other Diseases (Edited by G. Jori and C. Perria), pp. 1– 7. Libreria Progetto, Padova . Google Scholar Kojima, K., T. Oda, T. Nakahira and S. Iwabuchi (1981) Studies on polymeric sensitizers. 4. Photosensitized catalytic action of phthalocyanine-containing polymers. Kogakubu Kenkyu, Hokoku (Chiba Daigaku) 33, 25– 31 ( Chem. Abstr. 98: 172012d, 1982). Google Scholar Langlois, R., H. Ah, N. Brasseur, J. R. Wagner and J. E. Van Lier (1986) Biological activities of phthalocyanines. IV. Type II sensitized photo-oxidation of l-tryptophan and cholesterol by sulfonated metallo phthalocyanines. Photochem. Photobiol. In press. Wiley Online LibraryPubMedWeb of Science®Google Scholar Lillie, R. D. (1977) H. J. Conn's Biological Stains. Williams and Wilkens, Baltimore . Google Scholar Linstead, R. P. and F. T. Weiss (1950) Phthalocyanines and related compounds. Part XX. Further investigations on tetrabenzporphin and allied substances. J. Chem. Soc, 2975– 2987. Google Scholar Lukac, S. and J. R. Harbour (1982) Prevention of photo-oxidation of metal-free phthalocyanine by incorporation into dioctadecyldimethylammonium bromide (DODAB) vesicles. J. Chem. Soc. Chem. Commun, 154– 157. Google Scholar Maillard, P., P. Krausz and C. Giannotti (1980) Photoinduced activation of molecular oxygen by various porphyrins, bis-porphyrins, phthalocyanines, pyridino-porphyrazins, and their metal derivatives. J. Organomet. Chem. 197, 285– 290. CrossrefCASWeb of Science®Google Scholar Maillard, P., S. Gaspard, P. Krausz and C. Giannotti (1981) Electron transfer reactions between methyl viologen and porphyrins, bis-porphyrins, phthalocyanines and their metal derivatives. J. Organomet. Chem. 212, 185– 191. CrossrefCASWeb of Science®Google Scholar Manandhar, M., P. Bahr, L. Dulak, J. C. Eastman and M. J. Iatropoulos (1982) Short term tests on biomedical devices: II. Mutagenicity and cell transformation tests on CYAN BLUE® 185 pigment (copper phthalocyanine blue). Environ. Mutagen. 4, 393 (abstract). Web of Science®Google Scholar Monahan, A. R., J. A. Brado and A. F. DeLuca (1972) The asSociation of copper (II), vanadyl and zinc (II) 4, 4′,4, 4′-tetraalkylphthalocyanine dyes in benzene. J. Phys. Chem. 76, 1994– 1996. CrossrefWeb of Science®Google Scholar Moser, F. H. and A. L. Thomas (1983) The Phthalocyanines, Vols. I and 11. CRC Press, Inc., Boca Raton . Google Scholar Neuzil, E. and J. Ballenger (1952) Etude biologique de dérévts hydrosolubles des phthalocyanines. Compt. rend, Soc. biol. 146, 1108– 1110. CASPubMedWeb of Science®Google Scholar Ohno, T., S. Kato and N. N. Lichtin (1982) Electron transfer in the quenching of triplet states of zinc phthalocyanine and methylene blue by the use of Fe(III), Co(III), and organic oxidants. Chem. Soc. Japan 55, 2753– 2759. CrossrefCASWeb of Science®Google Scholar Ohno, T., S. Kato, A. Yamada and T. Tanno (1983) Electron transfer reactions of the photoexcited state of chloroaluminum phthalocyanine with aromatic amines, benzoquinones, and coordination compoutyds of iron (II) and iron (III). J. Phys. Chem. 87, 775– 781. CrossrefCASWeb of Science®Google Scholar Ohtani, H., T. Kobayashi, T. Ohno, S. Kato, T. Tanno and A. Yamada (1984) Nanosecond spectroscopy on the mechanism of the reduction of methylviologen sensitized by metallophthalocyanines. J. Phys. Chem. 88, 4431– 4435. CrossrefCASWeb of Science®Google Scholar Polony, R., G. Reinert, G. Hoelzle and A. Pugin (1977) Phthalocyanine compounds useful in combatting microorganisms. Swiss Appl. 77/3, 809, 25 Mar 1977; Ger. Offen. 2, 812, 261, 28 Sep 1978 (Chem. Abstr. 90: 40159y, 1979). Google Scholar Prasad, D. R. and G. Ferraudi (1982) Photochemistry of transition-metal phthalocyanines. Monophotonic and sequential biphotonic photochemical processes of cop-per(II) tetrakis(N-octadecylsulfamoyl)phthalocyanine in nonaqueous media. Inor. Chem. 21, 2967– 2971. CrossrefCASWeb of Science®Google Scholar Rodgers, M. A. J. (1985) Activated oxygen. In Primary Photo-Processes in Biology and Medicine (Edited by R. V. Bensasson, G. Jori, E. J. Land and T. G. Truscott), pp. 181– 195. Plenum Press, New York . CrossrefWeb of Science®Google Scholar Rousseau, J., D. Autenrieth and J. E. Van Lier (1983) Synthesis, tissue distribution and tumor uptake of [99Tc]tetrasulfophthalocyanine. Int. J. Appl. Radiat. Isot. 34, 571– 579. CrossrefCASPubMedWeb of Science®Google Scholar Rousseau, J., H. Ali, G. Lamoureux, E. Lebel and J. E. Van Lier (1985) Synthesis, tissue distribution and tumor uptake of 99mTc and 67Ga-tetrasulfophthalocyanine. Int. J. Appl. Radial. hot. 36, 709– 716. CrossrefCASPubMedWeb of Science®Google Scholar Scott, J. E. (1979) The molecular biology of histoche-mical staining by cationic phthalocyanine dyes: the design of replacements for Alcian Blue. J. Microsc. 119, 373– 381. Wiley Online LibraryWeb of Science®Google Scholar Shimoni, M., I. Rosenthal and E. Ben-Hur (1985) Tritium-labelled chloroaluminum phthalocyanine. J. Labelled Cpds. Radiopharmac. 22, 863– 865. Wiley Online LibraryWeb of Science®Google Scholar Sigel, H., P. Waldmeier and B. Prijs (1971) The dimer-ization, polymerization and hydrolysis of Fe(III)-4, 4′, 4, 4′-tetrasulfophthalocyanine. Inorg. Nucl. Chem. Lett. 7, 161– 169. CrossrefCASWeb of Science®Google Scholar Spikes, J. D. (1983) Photosensitization in mammalian cells. In Photoimmunology (Edited by J. A. Parrish, M. L. Kripke and W. Morison), pp. 23– 49. Plenum, New York . CrossrefGoogle Scholar Spikes, J. D. and J. C. Bommer (1986) Zinc tetrasul-fophthalocyanine as a photodynamic sensitizer for biomolecules. Int. J. Radiat. Res. In press. Google Scholar Straight, R. C. and J. D. Spikes (1985a) Photosensitized oxidation of biomolecules. In Singlet Oxygen, Vol. IV (Edited by A. A. Frimer), pp. 91– 143. CRC Press, Boca Raton . Google Scholar Straight, R. C. and J. D. Spikes (1985b) Preliminary studies with implanted polyvinyl alcohol sponges as a model for studying the role of neointerstitial and neovascular compartments of tumors in the localization, retention and photodynamic effects of photosensitizers. In Methods in Porphyrin Photosensitization (Edited by D. Kessel), pp. 77– 89. Plenum, New York . CrossrefWeb of Science®Google Scholar Van Lier, J. E., H. Ali and J. Rousseau (1984) Phthalocyanines labeled with gamma-emitting radionuc-lides as possible tumor scanning agents. In Porphyrin Localization and Treatment of Tumors (Edited by D. R. Doiron and C. J. Gomer), pp. 315– 319. Alan R. Liss, New York . Google Scholar Weber, J. H. and D. H. Busch (1965) Complexes derived from strong field ligands. XIX. Magnetic properties of transition metal derivatives of 4, 4′,4, 4′, tetrasulfophthalocyanine. Inorg. Chem. 4, 469– 471. CrossrefCASWeb of Science®Google Scholar Wrenn, F. R., M. L. Good and P. Handler (1951) The use of positron-emitting radioisotopes for the localization of brain tumors. Science 113, 525– 527. CrossrefCASPubMedWeb of Science®Google Scholar Wu, S.-K., H-C. Zhang, G-Z. Cui, D-N. Xu and H-J. Xu (1985) A study on the ability of some phthalocy-anine compounds for photogenerating singlet oxygen. Actu Chim. Sinica 43, 10– 13 (English version, pp. 21–25). Web of Science®Google Scholar Citing Literature Volume43, Issue6June 1986Pages 691-699 ReferencesRelatedInformation

Referência(s)