Artigo Revisado por pares

Alkali-Promoted Trimetallic Co−Rh−Mo Sulfide Catalysts for Higher Alcohols Synthesis from Synthesis Gas: Comparison of MWCNT and Activated Carbon Supports

2010; American Chemical Society; Volume: 49; Issue: 15 Linguagem: Inglês

10.1021/ie100427j

ISSN

1520-5045

Autores

Venkateswara Rao Surisetty, Ajay K. Dalai, Janusz A. Koziński,

Tópico(s)

Electrocatalysts for Energy Conversion

Resumo

Multiwalled carbon nanotubes (MWCNTs) and activated carbon were used as supports for the Co (4.5 and 6 wt %) promoted K (9 wt %) modified Rh−Mo catalysts (1.5 wt % Rh and 15 wt % Mo). The catalysts were extensively characterized in both oxide and sulfide phases. A drastic fall in surface area over the activated carbon-supported catalysts was observed after impregnating with metal species. Diffraction peaks were observed in the X-ray diffraction (XRD) patterns of the sulfided alkali-modified trimetallic catalysts, due to the characteristic reflections of the K−Mo−S mixed phase. H2-temperature programmed reduction (TPR) profiles showed that the reduction behavior of metal species was improved with the addition of Co. The activated carbon-supported trimetallic catalysts showed less activity and selectivity compared to the MWCNT-supported catalyst, and metal dispersions were higher on the MWCNT-supported catalysts. The MWCNT-supported, alkali-promoted trimetallic catalyst with 4.5 wt % Co showed the highest total alcohols yield of 0.244 g/(g cat h), ethanol selectivity of 20.1%, and higher alcohols selectivity of 31.4% at 320 °C and 8.28 MPa using a gas hourly space velocity (GHSV) of 3.6 m3 (STP)/(kg catalyst h). A maximum total alcohol yield of 0.261 g/(g cat h) and a selectivity of 42.9% were obtained on the 4.5 wt % Co−Rh−Mo−K/MWCNT catalyst, at a temperature of 330 °C. The total alcohol yield increased from 0.163 to 0.256 g/(g cat h) with increased pressure from 5.52 MPa (800 psig) to 9.65 MPa (1400 psig) over the 4.5 wt % Co−Rh−Mo−K/MWCNT catalyst.

Referência(s)