Artigo Acesso aberto Revisado por pares

Simultaneous Inhibition of Rhamnolipid and Polyhydroxyalkanoic Acid Synthesis and Biofilm Formation in Pseudomonas aeruginosa by 2-Bromoalkanoic Acids: Effect of Inhibitor Alkyl-Chain-Length

2013; Public Library of Science; Volume: 8; Issue: 9 Linguagem: Inglês

10.1371/journal.pone.0073986

ISSN

1932-6203

Autores

Merced Gutierrez, Mun Hwan Choi, Baoxia Tian, Ju Xu, Jong Kook Rho, Myeong Ok Kim, You‐Hee Cho, Sung Chul Yoon,

Tópico(s)

Biopolymer Synthesis and Applications

Resumo

Pseudomonas aeruginosa, an opportunistic human pathogen is known to synthesize rhamnolipid and polyhydroxyalkanoic acid (PHA) of which the acyl-group precursors (e.g., (R)-3-hydroxydecanoic acid) are provided through RhlA and PhaG enzyme, respectively, which have 57% gene sequence homology. The inhibitory effect of three 2-bromo-fatty acids of 2-bromohexanoic acid (2-BrHA), 2-bromooctanoic acid (2-BrOA) and 2-bromodecanoic acid (2-BrDA) was compared to get an insight into the biochemical nature of their probable dual inhibition against the two enzymes. The 2-bromo-compounds were found to inhibit rhamnolipid and PHA synthesis simultaneously in alkyl-chain-length dependent manner at several millimolar concentrations. The separate and dual inhibition of the RhlA and PhaG pathway by the 2-bromo-compounds in the wild-type cells was verified by investigating their inhibitory effects on the rhamnolipid and PHA synthesis in P. aeruginosa ΔphaG and ΔrhlA mutants. Unexpectedly, the order of inhibition strength was found 2-BrHA (≥90% at 2 mM) > 2-BrOA > 2-BrDA, equally for all of the rhamnolipids and PHA synthesis, swarming motility and biofilm formation. We suggest that the novel strongest inhibitor 2-BrHA could be potentially exploited to control the rhamnolipid-associated group behaviors of this pathogen as well as for its utilization as a lead compound in screening for antimicrobial agents based on new antimicrobial targets.

Referência(s)