Revisão Revisado por pares

Structural and Functional Basis for the Long QT Syndrome: Relevance to Veterinary Patients

2003; Wiley; Volume: 17; Issue: 4 Linguagem: Inglês

10.1111/j.1939-1676.2003.tb02468.x

ISSN

1939-1676

Autores

Melissa Finley, James D. Lillich, Robert F. Gilmour, Lisa C. Freeman,

Tópico(s)

Cardiac pacing and defibrillation studies

Resumo

Journal of Veterinary Internal MedicineVolume 17, Issue 4 p. 473-488 Open Access Structural and Functional Basis for the Long QT Syndrome: Relevance to Veterinary Patients Melissa R.1 Finley, Melissa R.1 Finley Departments of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS Salk Institute, La Jolla, CASearch for more papers by this authorJames D. Lillich, James D. Lillich Departments of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KSSearch for more papers by this authorRobert F. Gilmour Jr, Robert F. Gilmour Jr Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NYSearch for more papers by this authorLisa C. Freeman, Lisa C. Freeman Departments of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS DVM, PhD, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 228 Coles Hall, Manhattan, KS 66506-5802; E-mail: freeman@vet.ksu.eduSearch for more papers by this author Melissa R.1 Finley, Melissa R.1 Finley Departments of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS Salk Institute, La Jolla, CASearch for more papers by this authorJames D. Lillich, James D. Lillich Departments of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KSSearch for more papers by this authorRobert F. Gilmour Jr, Robert F. Gilmour Jr Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NYSearch for more papers by this authorLisa C. Freeman, Lisa C. Freeman Departments of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS DVM, PhD, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 228 Coles Hall, Manhattan, KS 66506-5802; E-mail: freeman@vet.ksu.eduSearch for more papers by this author First published: 28 June 2008 https://doi.org/10.1111/j.1939-1676.2003.tb02468.xCitations: 18 AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat Abstract Long QT syndrome (LQTS) is a condition characterized by prolongation of ventricular repolarization and is manifested clinically by lengthening of the QT interval on the surface ECG. Whereas inherited forms of LQTS associated with mutations in the genes that encode ion channel proteins are identified only in humans, the acquired form of LQTS occurs in humans and companion animal species. Often, acquired LQTS is associated with drug-induced block of the cardiac K+ current designated IKr. However, not all drugs that induce potentially fatal ventricular arrhythmias antagonize IKr, and not all drugs that block IKr are associated with ventricular arrhythmias. In clinical practice, the extent of QT interval prolongation and risk of ventricular arrhythmia associated with antagonism of IKr are modulated by pharmacokinetic and pharmacodynamic variables. Veterinarians can influence some of the potential risk factors (eg, drug dosage, route of drug administration, presence or absence of concurrent drug therapy, and patient electrolyte status) but not all (eg, patient gender/genetic background). Veterinarians need to be aware of the potential for acquired LQTS during therapy with drugs identified as blockers of HERG channels and IKr. References 1 Moss AJ, Schwartz PJ, Crampton RS, et al. The long QT syndrome. Prospective longitudinal study of 328 families. Circulation 1991; 84: 1136– 1144. 2 Reef VB, Reimer JM, Spencer PA. Treatment of atrial fibrillation in horses: New perspectives. J Vet Intern Med 1995; 9: 57– 67. 3 Dumaine R., Antzelevitch C. Molecular mechanisms underlying the long QT syndrome. Curr Opin Cardiol 2002; 17: 36– 42. 4 Towbin JA, Vatta M. Molecular biology and the prolonged QT syndromes. Am J Med 2001; 110: 385– 398. 5 Bennett PB. Long QT syndrome: Biophysical and pharmacologic mechanisms in LQT3. J Cardiovasc Electrophysiol 2000; 11: 819– 822. 6 January CT, Gong Q., Zhou Z. Long QT syndrome: Cellular basis and arrhythmia mechanism in LQT2. J Cardiovasc Electrophysiol 2000; 11: 1413– 1418. 7 Sanguinetti MC. Dysfunction of delayed rectifier potassium channels in an inherited arrhythmia. Ann N Y Acad Sci 1999; 868: 406– 413. 8 Sanguinetti MC. Long QT syndrome: Ionic basis and arrhythmia mechanism in long QT syndrome type 1. J Cardiovasc Electrophysiol 2000; 11: 710– 712. 9 Haverkamp W., Breithardt G., Camm AJ, et al. The potential for QT prolongation and pro-arrhythmia by non-anti-arrhythmic drugs: Clinical and regulatory implications. Report on a Policy Conference of the European Society of Cardiology. Cardiovasc Res 2000; 47: 219– 233. 10 Nattel S. Acquired delayed rectifier channelopathies: How heart disease and antiarrhythmic drugs mimic potentially lethal congenital cardiac disorders. Cardiovasc Res 2000; 48: 188– 190. 11 Roden DM, Lazzara R., Rosen M., et al. Multiple mechanisms in the long-QT syndrome. Current knowledge, gaps, and future directions. The SADS Foundation Task Force on LQTS. Circulation 1996; 94: 1996– 2012. 12 Campbell DL, Rasmusson RL, Qu Y., Strauss HC. The calcium-independent transient outward potassium current in isolated ferret right ventricular myocytes. I. Basic characterization and kinetic analysis. J Gen Physiol 1993; 101: 571– 601. 13 Litovsky SH, Antzelevitch C. Transient outward current prominent in canine ventricular epicardium but not endocardium. Circ Res 1988; 62: 116– 126. 14 Maylie J., Morad M. A transient outward current related to calcium release and development of tension in elephant seal atrial fibres. J Physiol 1984; 357: 267– 292. 15 Pacioretty LM, Gilmour RF Jr. Developmental changes of action potential configuration and I(to) in canine epicardium. Am J Physiol 1995; 268: H2513– H2521. 16 Schackow TE, Decker RS, Ten Eick RE. Electrophysiology of adult cat cardiac ventricular myocytes: Changes during primary culture. Am J Physiol 1995; 268: C1002– C1017. 17 Furukawa T., Myerburg RJ, Furukawa N., et al. Differences in transient outward currents of feline endocardial and epicardial myocytes. Circ Res 1990; 67: 1287– 1291. 18 Nerbonne JM, Nichols CG, Schwarz TL, Escande D. Genetic manipulation of cardiac K(+) channel function in mice: What have we learned, and where do we go from here Circ Res 2001; 89: 944– 956. 19 Tseng GN, Hoffman BF. Two components of transient outward current in canine ventricular myocytes. Circ Res 1989; 64: 633– 647. 20 Zygmunt AC, Gibbons WR. Calcium-activated chloride current in rabbit ventricular myocytes. Circ Res 1991; 68: 424– 437. 21 Antzelevitch C. Molecular basis for the transmural distribution of the transient outward current. J Physiol 2001; 533: 1. 22 Yan GX, Antzelevitch C. Cellular basis for the electrocardiographic J wave. Circulation 1996; 93: 372– 379. 23 Hoppe UC, Marban E., Johns DC. Molecular dissection of cardiac repolarization by in vivo Kv4.3 gene transfer. J Clin Invest 2000; 105: 1077– 1084. 24 Zygmunt AC, Eddlestone GT, Thomas GP, et al. Larger late sodium conductance in M cells contributes to electrical heterogeneity in canine ventricle. Am J Physiol Heart Circ Physiol 2001; 281: H689– H697. 25 Barajas-Martinez H., Elizalde A., Sanchez-Chapula JA. Developmental differences in delayed rectifying outward current in feline ventricular myocytes. Am J Physiol Heart Circ Physiol 2000; 278: H484– H492. 26 Follmer CH, Colatsky TJ. Block of delayed rectifier potassium current, IK, by flecainide and E-4031 in cat ventricular myocytes. Circulation 1990; 82: 289– 293. 27 Gintant GA. Two components of delayed rectifier current in canine atrium and ventricle. Does IKs play a role in the reverse rate dependence of class III agents? Circ Res 1996; 78: 26– 37. 28 Li GR, Feng J., Yue L., et al. Evidence for two components of delayed rectifier K+ current in human ventricular myocytes. Circ Res 1996; 78: 689– 696. 29 Liu DW, Antzelevitch C. Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. Circ Res 1995; 76: 351– 365. 30 Salata JJ, Jurkiewicz NK, Jow B., et al. IK of rabbit ventricle is composed of two currents: Evidence for IKs. Am J Physiol 1996; 271: H2477– H2489. 31 Sanguinetti MC, Jurkiewicz NK. Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol 1990; 96: 195– 215. 32 Shibasaki T. Conductance and kinetics of delayed rectifier potassium channels in nodal cells of the rabbit heart. J Physiol 1987; 387: 227– 250. 33 Tseng GN. I(Kr): The hERG channel. J Mol Cell Cardiol 2001; 33: 835– 849. 34 Burashnikov A., Antzelevitch C. Prominent I(Ks) in epicardium and endocardium contributes to development of transmural dispersion of repolarization but protects against development of early afterde-polarizations. J Cardiovasc Electrophysiol 2002; 13: 172– 177. 35 Viswanathan PC, Shaw RM, Rudy Y. Effects of IKr and IKs heterogeneity on action potential duration and its rate dependence: A simulation study. Circulation 1999; 99: 2466– 2474. 36 Nattel S., Yue L., Wang Z. Cardiac ultrarapid delayed rectifiers: A novel potassium current family of functional similarity and molecular diversity. Cell Physiol Biochem 1999; 9: 217– 226. 37 Furukawa T., Kimura S., Furukawa N., et al. Potassium rectifier currents differ in myocytes of endocardial and epicardial origin. Circ Res 1992; 70: 91– 103. 38 Liu DW, Gintant GA, Antzelevitch C. Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circ Res 1993; 72: 671– 687. 39 January CT, Moscucci A. Cellular mechanisms of early after-depolarizations. Ann N Y Acad Sci 1992; 644: 23– 32. 40 Volders PG, Vos MA, Szabo B., et al. Progress in the understanding of cardiac early afterdepolarizations and torsades de pointes: Time to revise current concepts. Cardiovasc Res 2000; 46: 376– 392. 41 Shieh CC, Coghlan M., Sullivan JP, Gopalakrishnan M. Potassium channels: Molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev 2000; 52: 557– 594. 42 Snyders DJ. Structure and function of cardiac potassium channels. Cardiovasc Res 1999; 42: 377– 390. 43 Bezzina CR, Rook MB, Wilde AA. Cardiac sodium channel and inherited arrhythmia syndromes. Cardiovasc Res 2001; 49: 257– 271. 44 Balser JR. Inherited sodium channelopathies: Novel therapeutic and proarrhythmic molecular mechanisms. Trends Cardiovasc Med 2001; 11: 229– 237. 45 Balser JR. Inherited sodium channelopathies: Models for acquired arrhythmias Am J Physiol Heart Circ Physiol 2002; 282: H1175– H1180. 46 Freeman LC, Pacioretty LM, Moise NS, et al. Decreased density of Ito in left ventricular myocytes from German shepherd dogs with inherited arrhythmias. J Cardiovasc Electrophysiol 1997; 8: 872– 883. 47 Plaster NM, Tawil R., Tristani-Firouzi M., et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen's syndrome. Cell 2001; 105: 511– 519. 48 Abbott GW, Goldstein SA. Disease-associated mutations in KCNE potassium channel subunits (MiRPs) reveal promiscuous disruption of multiple currents and conservation of mechanism. FASEB J 2002; 16: 390– 400. 49 Sanguinetti MC. Maximal function of minimal K+ channel subunits. Trends Pharmacol Sci 2000; 21: 199– 201. 50 Weerapura M., Nattel S., Chartier D., et al. A comparison of currents carried by HERG, with and without coexpression of MiRP, and the native rapid delayed rectifier current. Is MiRP the missing link? J Physiol 2002; 540: 15– 27. 51 Roden DM. Pharmacogenetics and drug-induced arrhythmias. Cardiovasc Res 2001; 50: 224– 231. 52 Hiraoka M., Sawada K., Kawano S. Effects of quinidine on plateau currents of guinea-pig ventricular myocytes. J Mol Cell Cardiol 1986; 18: 1097– 1106. 53 Imaizumi Y., Giles WR. Quinidine-induced inhibition of transient outward current in cardiac muscle. Am J Physiol 1987; 253: H704– H708. 54 Lee KS, Hume JR, Giles W., Brown AM. Sodium current depression by lidocaine and quinidine in isolated ventricular cells. Nature 1981; 291: 325– 327. 55 Po SS, Wang DW, Yang IC, et al. Modulation of HERG potassium channels by extracellular magnesium and quinidine. J Cardiovasc Pharmacol 1999; 33: 181– 185. 56 Yao JA, Trybulski EJ, Tseng GN. Quinidine preferentially blocks the slow delayed rectifier potassium channel in the rested state. J Pharmacol Exp Ther 1996; 279: 856– 864. 57 Yang T., Roden DM. Extracellular potassium modulation of drug block of IKr. Implications for torsades de pointes and reverse use-dependence. Circulation 1996; 93: 407– 411. 58 Snyders J., Knoth KM, Roberds SL, Tamkun MM. Time-, voltage-, and state-dependent block by quinidine of a cloned human cardiac potassium channel. Mol Pharmacol 1992; 41: 322– 330. 59 Bauman JL, Bauernfeind RA, Hoff JV, et al. Torsades de pointes due to quinidine: Observations in 31 patients. Am Heart J 1984; 107: 425– 430. 60 Roden DM, Thompson KA, Hoffman BF, Woosley RL. Clinical features and basic mechanisms of quinidine-induced arrhythmias. J Am Coll Cardiol 1986; 8: 73A– 78A. 61 Roden DM, Woosley RL, Primm RK. Incidence and clinical features of the quinidine-associated long QT syndrome: Implications for patient care. Am Heart J 1986; 111: 1088– 1093. 62 Thompson KA, Murray JJ, Blair IA, et al. Plasma concentrations of quinidine, its major metabolites, and dihydroquinidine in patients with torsades de pointes. Clin Pharmacol Ther 1988; 43: 636– 642. 63 Jurkiewicz NK, Sanguinetti MC. Rate-dependent prolongation of cardiac action potentials by a methanesulfonanilide class III antiarrhythmic agent. Specific block of rapidly activating delayed rectifier K+ current by dofetilide. Circ Res 1993; 72: 75– 83. 64 Vandenberg JI, Walker BD, Campbell TJ. HERG K+ channels: Friend and foe. Trends Pharmacol Sci 2001; 22: 240– 246. 65 Woosley RL, Chen Y., Freiman JP, Gillis RA. Mechanism of the cardiotoxic actions of terfenadine. JAMA 1993; 269: 1532– 1536. 66 Wysowski DK, Corken A., Gallo-Torres H., et al. Postmarketing reports of QT prolongation and ventricular arrhythmia in association with cisapride and Food and Drug Administration regulatory actions. Am J Gastroenterol 2001; 96: 1698– 1703. 67 Hondeghem LM, Snyders DJ. Class III antiarrhythmic agents have a lot of potential but a long way to go. Reduced effectiveness and dangers of reverse use dependence. Circulation 1990; 81: 686– 690. 68 Benton RE, Sale M., Flockhart DA, Woosley RL. Greater quinidine-induced QTc interval prolongation in women. Clin Pharmacol Ther 2000; 67: 413– 418. 69 Drici MD, Burklow TR, Haridasse V., et al. Sex hormones prolong the QT interval and downregulate potassium channel expression in the rabbit heart. Circulation 1996; 94: 1471– 1474. 70 Drici MD, Knollmann BC, Wang WX, Woosley RL. Cardiac actions of erythromycin: Influence of female sex. JAMA 1998; 280: 1774– 1776. 71 Locati EH, Zareba W., Moss AJ, et al. Age- and sex-related differences in clinical manifestations in patients with congenital long-QT syndrome: Findings from the International LQTS Registry. Circulation 1998; 97: 2237– 2244. 72 Pham TV, Sosunov EA, Gainullin RZ, et al. Impact of sex and gonadal steroids on prolongation of ventricular repolarization and arrhythmias induced by I(K)-blocking drugs. Circulation 2001; 103: 2207– 2212. 73 Rodriguez I., Kilborn MJ, Liu XK, et al. Drug-induced QT prolongation in women during the menstrual cycle. JAMA 2001; 285: 1322– 1326. 74 Sesti F., Abbott GW, Wei J., et al. A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proc Natl Acad Sci USA 2000; 97: 10613– 10618. 75 Splawski I., Shen J., Timothy KW, et al. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 2000; 102: 1178– 1185. 76 Iwasa H., Kurabayashi M., Nagai R., et al. Multiple single-nucleotide polymorphisms (SNPs) in the Japanese population in six candidate genes for long QT syndrome. J Hum Genet 2001; 46: 158– 162. 77 Hondeghem LM, Carlsson L., Duker G. Instability and triangulation of the action potential predict serious proarrhythmia, but action potential duration prolongation is antiarrhythmic. Circulation 2001; 103: 2004– 2013. 78 Sanguinetti MC, Jurkiewicz NK. Role of external Ca2+ and K+ in gating of cardiac delayed rectifier K+ currents. Pflugers Arch 1992; 420: 180– 186. 79 Sanguinetti MC, Jiang C., Curran ME, Keating MT. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 1995; 81: 299– 307. 80 Yang T., Snyders DJ, Roden DM. Rapid inactivation determines the rectification and [K+]o dependence of the rapid component of the delayed rectifier K+ current in cardiac cells. Circ Res 1997; 80: 782– 789. 81 Compton SJ, Lux RL, Ramsey MR, et al. Genetically defined therapy of inherited long-QT syndrome. Correction of abnormal repolarization by potassium. Circulation 1996; 94: 1018– 1022. 82 Tan HL, Alings M., Van Olden RW, Wilde AA. Long-term (subacute) potassium treatment in congenital HERG-related long QT syndrome (LQTS2). J Cardiovasc Electrophysiol 1999; 10: 229– 233. 83 Berthet M., Denjoy I., Donger C., et al. C-terminal HERG mutations: The role of hypokalemia and a KCNQ1-associated mutation in cardiac event occurrence. Circulation 1999; 99: 1464– 1470. 84 Kubota T., Shimizu W., Kamakura S., Horie M. Hypokalemia-induced long QT syndrome with an underlying novel missense mutation in S4-S5 linker of KCNQ1. J Cardiovasc Electrophysiol 2000; 11: 1048– 1054. 85 Ebert SN, Liu XK, Woosley RL. Female gender as a risk factor for drug-induced cardiac arrhythmias: Evaluation of clinical and experimental evidence. J Womens Health 1998; 7: 547– 557. 86 Pratt CM, Camm AJ, Cooper W., et al. Mortality in the survival with oral D-sotalol (SWORD) trial: Why did patients die Am J Cardiol 1998; 81: 869– 876. 87 Kligfield P., Lax KG, Okin PM. QT interval-heart rate relation during exercise in normal men and women: Definition by linear regression analysis. J Am Coll Cardiol 1996; 28: 1547– 1555. 88 Rautaharju PM, Zhou SH, Wong S., et al. Sex differences in the evolution of the electrocardiographic QT interval with age. Can J Cardiol 1992; 8: 690– 695. 89 Bidoggia H., Maciel JP, Capalozza N., et al. Sex differences on the electrocardiographic pattern of cardiac repolarization: Possible role of testosterone. Am Heart J 2000; 140: 678– 683. 90 Shuba YM, Degtiar VE, Osipenko VN, et al. Testosterone-mediated modulation of HERG blockade by proarrhythmic agents. Bioch-em Pharmacol 2001; 62: 41– 49. 91 Liu XK, Katchman A., Drici MD, et al. Gender difference in the cycle length-dependent QT and potassium currents in rabbits. J Pharmacol Exp Ther 1998; 285: 672– 679. 92 Liu XK, Wang W., Ebert SN, et al. Female gender is a risk factor for torsades de pointes in an in vitro animal model. J Cardiovasc Pharmacol 1999; 34: 287– 294. 93 Lu HR, Remeysen P., Somers K., et al. Female gender is a risk factor for drug-induced long QT and cardiac arrhythmias in an in vivo rabbit model. J Cardiovasc Electrophysiol 2001; 12: 538– 545. 94 Pham TV, Rosen MR. Sex, hormones, and repolarization. Cardiovasc Res 2002; 53: 740– 751. 95 Trepanier-Boulay V., Michel C., Tremblay A., Fiset C. Gender-based differences in cardiac repolarization in mouse ventricle. Circ Res 2001; 89: 437– 444. 96 Wu Y., Anderson ME. Reduced repolarization reserve in ventricular myocytes from female mice. Cardiovasc Res 2002; 53: 763– 769. 97 Pham TV, Robinson RB, Danilo P., Rosen MR. Effects of gonadal steroids on gender-related differences in transmural dispersion of L-type calcium current. Cardiovasc Res 2002; 53: 752– 762. 98 Gerring EL, King JN, Edwards GB, et al. A multicentre trial of cisapride in the prophylaxis of equine postoperative ileus. Equine Vet Educ 1991; 3: 143– 145. 99 Hall JA, Washabau RJ. Diagnosis and treatment of gastric motility disorders. Vet Clin North Am Small Anim Pract 1999; 29: 377– 395. 100 Moses L., Harpster NK, Beck KA, Hartzband L. Esophageal motility dysfunction in cats: A study of 44 cases. J Am Anim Hosp Assoc 2000; 36: 309– 312. 101 Yang T., Snyders D., Roden DM. Drug block of I(kr): Model systems and relevance to human arrhythmias. J Cardiovasc Pharmacol 2001; 38: 737– 744. 102 Brahmajothi MV, Morales MJ, Reimer KA, Strauss HC. Regional localization of ERG, the channel protein responsible for the rapid component of the delayed rectifier, K+ current in the ferret heart. Circ Res 1997; 81: 128– 135. 103 Carmeliet E. Voltage- and time-dependent block of the delayed K+ current in cardiac myocytes by dofetilide. J Pharmacol Exp Ther 1992; 262: 809– 817. 104 Nurmi A., Vornanen M. Electrophysiological properties of rainbow trout cardiac myocytes in serum-free primary culture. Am J Physiol Regul Integr Comp Physiol 2002; 282: R1200– R1209. 105 Wang L., Feng ZP, Kondo CS, et al. Developmental changes in the delayed rectifier K+ channels in mouse heart. Circ Res 1996; 79: 79– 85. 106 Lu HR, Marien R., Saels A., de Clerck F. Species plays an important role in drug-induced prolongation of action potential duration and early afterdepolarizations in isolated Purkinje fibers. J Cardiovasc Electrophysiol 2001; 12: 93– 102. 107 Emori T., Antzelevitch C. Cellular basis for complex T waves and arrhythmic activity following combined I(Kr) and I(Ks) block. J Cardiovasc Electrophysiol 2001; 12: 1369– 1378. 108 Finley MR, Li Y., Hua F., et al. Expression and co-association of ERG1, KCNQ1 and KCNE1 potassium channel proteins in horse heart. Am J Physiol Heart Circ Physiol 2002; 283: H126– H138. 109 Chezalviel-Guilbert F., Weissenburger J., Davy JM, et al. Proarrhythmic effects of a quinidine analog in dogs with chronic A-V block. Fundam Clin Pharmacol 1995; 9: 240– 247. 110 Davis AS. The pre-clinical assessment of QT interval prolongation: A comparison of in vitro and in vivo methods. Hum Exp Toxicol 1998; 17: 677– 680. 111 Drici MD, Wang WX, Liu XK, et al. Prolongation of QT interval in isolated feline hearts by antipsychotic drugs. J Clin Psycho-pharmacol 1998; 18: 477– 481. 112 Satoh Y., Sugiyama A., Chiba K., et al. QT-prolonging effects of sparfloxacin, a fluoroquinolone antibiotic, assessed in the in vivo canine model with monophasic action potential monitoring. J Car-diovasc Pharmacol 2000; 36: 510– 515. 113 Satoh Y., Sugiyama A., Tamura K., Hashimoto K. Effects of mexiletine on the canine cardiovascular system complicating cisapride overdose: Potential utility of mexiletine for the treatment of drug-induced long QT syndrome. Jpn J Pharmacol 2000; 83: 327– 334. 114 Satoh Y., Sugiyama A., Tamura K., Hashimoto K. Effect of magnesium sulfate on the haloperidol-induced QT prolongation assessed in the canine in vivo model under the monitoring of monophasic action potential. Jpn Circ J 2000; 64: 445– 451. 115 Sugiyama A., Hashimoto K. Effects of gastrointestinal prokinetic agents, TKS159 and cisapride, on the in situ canine heart assessed by cardiohemodynamic and electrophysiological monitoring. Toxicol Appl Pharmacol 1998; 152: 261– 269. 116 Wang WX, Ebert SN, Liu XK, et al. Conventional antihistamines slow cardiac repolarization in isolated perfused (Langendorff) feline hearts. J Cardiovasc Pharmacol 1998; 32: 123– 128. 117 Weissenburger J., Davy JM, Chezalviel F. Experimental models of torsades de pointes. Fundam Clin Pharmacol 1993; 7: 29– 38. 118 Weissenburger J., Noyer M., Cheymol G., Jaillon P. Electrophysiological effects of cetirizine, astemizole and D-sotalol in a canine model of long QT syndrome. Clin Exp Allergy 1999; 29(Suppl 3): 190– 196. 119 Sgarbossa EB, Pinski SL, Williams D., et al. Comparison of QT intervals in African-Americans versus Caucasians. Am J Cardiol 2000; 86: 880– 882. 120 Chapman N., Mayet J., Ozkor M., et al. Ethnic and gender differences in electrocardiographic QT length and QT dispersion in hypertensive subjects. J Hum Hypertens 2000; 14: 403– 405. 121 Mansi IA, Nash IS. Ethnic differences in electrocardiographic intervals and axes. J Electrocardiol 2001; 34: 303– 307. 122 Sugiyam A., Ishida Y., Satoh Y., et al. Electrophysiological, anatomical and histological remodeling of the heart to AV block enhances susceptibility to arrhythmogenic effects of QT-prolonging drugs. Jpn J Pharmacol 2002; 88: 341– 350. 123 Weissenburger J., Davy JM, Chezalviel F., et al. Arrhythmogenic activities of antiarrhythmic drugs in conscious hypokalemic dogs with atrioventricular block: Comparison between quinidine, lidocaine, flecainide, propranolol and sotalol. J Pharmacol Exp Ther 1991; 259: 871– 883. 124 Kii Y., Nakatsuji K., Nose I., et al. Effects of 5-HT(4) receptor agonists, cisapride and mosapride citrate on electrocardiogram in anaesthetized rats and guinea-pigs and conscious cats. Pharmacol Toxicol 2001; 89: 96– 103. 125 Potet F., Bouyssou T., Escande D., Baro I. Gastrointestinal pro-kinetic drugs have different affinity for the human cardiac human ether-a-gogo K(+) channel. J Pharmacol Exp Ther 2001; 299: 1007– 1012. 126 Ohki R., Takahashi M., Mizuno O., et al. Torsades de pointes ventricular tachycardia induced by mosapride and flecainide in the presence of hypokalemia. Pacing Clin Electrophysiol 2001; 24: 119– 121. 127 King JN, Gerring EL. Actions of the novel gastrointestinal prokinetic agent cisapride on equine bowel motility. J Vet Pharmacol Ther 1988; 11: 314– 321. 128 Vitola J., Vukanovic J., Roden DM. Cisapride-induced torsades de pointes. J Cardiovasc Electrophysiol 1998; 9: 1109– 1113. 129 Hammond TG, Carlsson L., Davis AS, et al. Methods of collecting and evaluating non-clinical cardiac electrophysiology data in the pharmaceutical industry: Results of an international survey. Cardiovasc Res 2001; 49: 741– 750. 130 Netzer R., Ebneth A., Bischoff U., Pongs O. Screening lead compounds for QT interval prolongation. Drug Discov Today 2001; 6: 78– 84. 131 Riccio ML, Moise NS, Otani NF, et al. Vector quantization of T wave abnormalities associated with a predisposition to ventricular arrhythmias and sudden death. Ann Nonivas Electrocardiol 1998; 3: 46– 53. 132 Wakefield ID, Pollard C., Redfern WS, et al. The application of in vitro methods to safety pharmacology. Fundam Clin Pharmacol 2002; 16: 209– 218. 133 Boyle NG, Weiss JN. Making QT correction simple is complicated. J Cardiovasc Electrophysiol 2001; 12: 421– 423. 134 Raunig D., Depasquale MJ, Huang CH, et al. Statistical analysis of QT interval as a function of changes in RR interval in the conscious dog. J Pharmacol Toxicol Methods 2001; 46: 1– 11. 135 Malik M. Problems of heart rate correction in assessment of drug-induced QT inter

Referência(s)