Skeletal muscle overexpression of nuclear respiratory factor 1 increases glucose transport capacity
2003; Wiley; Volume: 17; Issue: 12 Linguagem: Inglês
10.1096/fj.03-0049com
ISSN1530-6860
AutoresKeith Baar, Zheng Song, Clay F. Semenkovich, Terry E. Jones, Dong-Ho Han, Lorraine A. Nolte, Edward O. Ojuka, May Chen, John O. Holloszy,
Tópico(s)Metabolism, Diabetes, and Cancer
ResumoNuclear respiratory factor 1 (NRF-1) is a transcriptional activator of nuclear genes that encode a range of mitochondrial proteins including cytochrome c, various other respiratory chain subunits, and delta-aminolevulinate synthase. Activation of NRF-1 in fibroblasts has been shown to induce increases in cytochrome c expression and mitochondrial respiratory capacity. To further evaluate the role of NRF-1 in the regulation of mitochondrial biogenesis and respiratory capacity, we generated transgenic mice overexpressing NRF-1 in skeletal muscle. Cytochrome c expression was increased approximately twofold and delta-aminolevulinate synthase was increased approximately 50% in NRF-1 transgenic muscle. The levels of some mitochondrial proteins were increased 50-60%, while others were unchanged. Muscle respiratory capacity was not increased in the NRF-1 transgenic mice. A finding that provides new insight regarding the role of NRF-1 was that expression of MEF2A and GLUT4 was increased in NRF-1 transgenic muscle. The increase in GLUT4 was associated with a proportional increase in insulin-stimulated glucose transport. These results show that an isolated increase in NRF-1 is not sufficient to bring about a coordinated increase in expression of all of the proteins necessary for assembly of functional mitochondria. They also provide the new information that NRF-1 overexpression results in increased expression of GLUT4.
Referência(s)