Tissue origin and extracellular matrix control neutral proteinase activity in human fibroblast three-dimensional cultures
1996; Wiley; Volume: 168; Issue: 1 Linguagem: Inglês
10.1002/(sici)1097-4652(199607)168
ISSN1097-4652
AutoresSandrine Lorimier, Philippe Gillery, William Hornebeck, F. Chastang, D. Laurent‐Maquin, Sylvie Bouthors, C Droullé, G Potron, François‐Xavier Maquart,
Tópico(s)Cellular transport and secretion
ResumoJournal of Cellular PhysiologyVolume 168, Issue 1 p. 188-198 Tissue origin and extracellular matrix control neutral proteinase activity in human fibroblast three-dimensional cultures Sandrine Lorimier, Sandrine Lorimier Laboratoire de Biochimie-CNRS EP 89, Faculté de Médecine, 51095 Reims, France Laboratoire de Recherche en Odontologie, Faculté d'Odontologie, 51100 Reims, FranceSearch for more papers by this authorPhilippe Gillery, Philippe Gillery Laboratoire de Biochimie-CNRS EP 89, Faculté de Médecine, 51095 Reims, FranceSearch for more papers by this authorWilliam Hornebeck, William Hornebeck Laboratoire de Biochimie-CNRS EP 89, Faculté de Médecine, 51095 Reims, FranceSearch for more papers by this authorFrançois Chastang, François Chastang Laboratoire de Biochimie-CNRS EP 89, Faculté de Médecine, 51095 Reims, FranceSearch for more papers by this authorDominique Laurent-Maquin, Dominique Laurent-Maquin Laboratoire de Recherche en Odontologie, Faculté d'Odontologie, 51100 Reims, FranceSearch for more papers by this authorSylvie Bouthors, Sylvie Bouthors Laboratoire de Recherche en Odontologie, Faculté d'Odontologie, 51100 Reims, FranceSearch for more papers by this authorChantal Droulle, Chantal Droulle Laboratoire Central d'Hématologie, Centre Hospitalier Universitaire, 51092 Reims, FranceSearch for more papers by this authorGérard Potron, Gérard Potron Laboratoire Central d'Hématologie, Centre Hospitalier Universitaire, 51092 Reims, FranceSearch for more papers by this authorFrançois-Xavier Maquart, Corresponding Author François-Xavier Maquart Laboratoire de Biochimie-CNRS EP 89, Faculté de Médecine, 51095 Reims, FranceLaboratoire de Biochimie, Faculté de Médecine, 51, rue Cognacq-Jay, 51095 Reims Cedex, FranceSearch for more papers by this author Sandrine Lorimier, Sandrine Lorimier Laboratoire de Biochimie-CNRS EP 89, Faculté de Médecine, 51095 Reims, France Laboratoire de Recherche en Odontologie, Faculté d'Odontologie, 51100 Reims, FranceSearch for more papers by this authorPhilippe Gillery, Philippe Gillery Laboratoire de Biochimie-CNRS EP 89, Faculté de Médecine, 51095 Reims, FranceSearch for more papers by this authorWilliam Hornebeck, William Hornebeck Laboratoire de Biochimie-CNRS EP 89, Faculté de Médecine, 51095 Reims, FranceSearch for more papers by this authorFrançois Chastang, François Chastang Laboratoire de Biochimie-CNRS EP 89, Faculté de Médecine, 51095 Reims, FranceSearch for more papers by this authorDominique Laurent-Maquin, Dominique Laurent-Maquin Laboratoire de Recherche en Odontologie, Faculté d'Odontologie, 51100 Reims, FranceSearch for more papers by this authorSylvie Bouthors, Sylvie Bouthors Laboratoire de Recherche en Odontologie, Faculté d'Odontologie, 51100 Reims, FranceSearch for more papers by this authorChantal Droulle, Chantal Droulle Laboratoire Central d'Hématologie, Centre Hospitalier Universitaire, 51092 Reims, FranceSearch for more papers by this authorGérard Potron, Gérard Potron Laboratoire Central d'Hématologie, Centre Hospitalier Universitaire, 51092 Reims, FranceSearch for more papers by this authorFrançois-Xavier Maquart, Corresponding Author François-Xavier Maquart Laboratoire de Biochimie-CNRS EP 89, Faculté de Médecine, 51095 Reims, FranceLaboratoire de Biochimie, Faculté de Médecine, 51, rue Cognacq-Jay, 51095 Reims Cedex, FranceSearch for more papers by this author First published: July 1996 https://doi.org/10.1002/(SICI)1097-4652(199607)168:1 3.0.CO;2-2Citations: 20AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Remodeling of the extracellular matrix by fibroblasts is an important step in the process of wound healing and tissue repair. We compared the behavior of fibroblasts from two different tissues, dermis and gingiva, in three-dimensional lattices made of two different extracellular matrix macromolecules, collagen and fibrin. Cells were grown in monolayer cultures from normal skin or gingiva and seeded in three-dimensional lattices made of either collagen or fibrin. Photonic and scanning electron microscopy did not reveal any morphological differences between the two types of fibroblasts in both sets of lattices. Both types of fibroblasts retracted collagen lattices similarly and caused only a slight degradation of the collagen substratum. By contrast, when seeded in fibrin lattices, gingival fibroblasts completely digested their substratum in less than 8 days, whereas only a slight fibrin degradation was observed with dermal fibroblasts. The ability of gingival but not dermal fibroblasts to express high levels of tissue plasminogen activators (tPA) when cultured in fibrin lattices was assessed on an immunological basis. Also, deprivation of plasminogen-contaminating fibrinogen preparations or use of tPA inhibitors markedly inhibited both fibrinolysis and retraction rates of fibrin lattices by gingival fibroblasts. Casein-zymography confirmed the intense proteolytic activity induced by fibrin in gingival fibroblasts. It was inhibited by aprotinin and phenyl methylsulfonyl fluoride (PMSF), two non-specific inhibitors of serine proteinases, and by η-amino-caproic acid (ηACA), an inhibitor of plasminogen activators. Monolayer cultures exhibited only trace amounts of caseinolytic activity. Our results demonstrate that the expression of proteinases by fibroblasts is dependent not only on their tissue origin but also on the surrounding extracellular matrix. The intense fibrinolytic activity of gingival fibroblasts in fibrin lattices may explain partially the high rate of healing clinically observed in gingiva. © 1996 Wiley-Liss, Inc. Literature Cited Alkajaersig, N., Fletcher, A. P., and Sherry, S. (1959) ε-Aminocaproic acid: An inhibitor of plasminogen activation. J. Biol. Chem., 234: 832–837. Bell, E., Ivarsson, B., and Merrill, C. (1979) Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Natl. Acad. Sci. U.S.A., 76: 1274–1278. Colige, A. C., Lambert, C. A., Nusgens, B. V., and Lapière, C. M. (1992) Effect of cell-cell and cell-matrix interactions on the response of fibroblasts to EGF in vitro. Expression of collagen type I, collagenase, stromelysin and tissue inhibitor of metalloproteinases. Biochem. J., 285: 215–221. Damsky, C. H., and Werb, Z. (1992) Signal transduction by integrin receptors for extracellular matrix: Cooperative processing of extracellular information. Curr. Opin. Cell Biol., 5: 772–781. Edgington, S. M. (1992) 3-D biotech: Tissue engineering. Biotechnology, 10: 855–860. Fiszer-Szafarz, B., Szafarz, D., and Guevara de Murillo, A. (1981) A general, fast, and sensitive micromethod for DNA determination: Application to rat and mouse liver, rat hepatoma, human leukocytes, chicken fibroblasts, and yeast cells. Anal. Biochem., 110: 165–170. Friberger, P. (1975) Methods for the determination of plasmin, antiplasmin and plasminogen by means of the substrate S-2251. Haemostasis, 7: 138–145. Gillery, P., Maquart, F. X., and Borel, J. P. (1986) Fibronectin dependence of the contraction of collagen lattices by human skin fibroblasts. Exp. Cell Res., 167: 29–37. Gillery, P., Bellon, G., Coustry, F., and Borel, J. P. (1989) Culture of fibroblasts in fibrin lattices: Models for the study of metabolic activities of the cells in physiological conditions. J. Cell. Physiol., 140: 483–490. Gillery, P., Leperre, A., Coustry, F., Maquart, F. X., and Borel, J. P. (1992) Different regulation of collagen I gene expression in human fibroblast monolayer cultures. FEBS Lett., 296: 297–299. Herron, G. S., Werb, Z., Dwyer, K., and Banda, M. J. (1986) Secretion of metalloproteinases by stimulated capillary endothelial cells. I. Production of procollagenase and prostromelysin exceeds expression of proteolytic activity. J. Biol. Chem., 261: 2810–2813. Knox, P., Crooks, S., Scaife, M. C., and Patel, S. (1987) Role of plasminogen, plasmin and plasminogen activators in the migration of fibroblasts into plasma clots. J. Cell. Physiol., 132: 501–508. Laemmli, U. K., and Favre, M. (1973) Maturation of the head of bacteriophage T4. I. DNA packaging events. J. Mol. Biol., 80: 575–599. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with folin-phenol reagent. J. Biol. Chem., 193: 265–275. Maquart, F. X., Szymanovicz, A., Cam, Y., Randoux, A., and Borel, J. P. (1980) Rates of DNA and protein syntheses by fibroblast cultures in the presence of various glucose concentrations. Biochimie, 62: 93–97. Menashi, S., Hornebeck, W., Robert, L., Caen, J., and Legrand, Y. (1989) Interaction of platelets with endothelial cells: Activation of a novel neutral protease. Exp. Cell Res., 183: 294–302. Niewiarowski, S., Regoeczi, E., and Mustard, J. F. (1972) Adhesion of fibroblasts to polymerizing fibrin and retraction of fibrin induced by fibroblasts. Proc. Soc. Exp. Biol. Med., 140: 199–204. Nusgens, B., Merrill, C., Lapière, C., and Bell, E. (1984) Collagen biosynthesis by cells in a tissue equivalent matrix in vitro. Collagen Rel. Res., 4: 351–364. Quigley, J. P. (1976) Association of a protease (plasminogen activator) with a specific membrane fraction isolated from transformed cells. J. Cell Biol., 71: 472–486. Ramsby, M. L., and Kreutzer, D. L. (1993) Fibrin induction of thrombospondin in corneal endothelial cells in vitro. Invest. Ophthalmol. Vis. Sci., 34: 3207–3219. Schiro, J. A., Chan, B. M. C., Roswit, W. T., Kassner, P. D., Pentland, A. P., Hemler, M. E., Eisen, A. Z., and Kupper, T. S. (1991) Integrin α2β1 (VLA-2) mediates reorganization and contraction of collagen matrices by human cells. Cell, 67: 403–410. Schoenwaelder, S. M., Jackson, S. P., Yuan, Y., Teasdale, M. S., Salem, H. H., and Mitchell, C. A. (1994) Tyrosine kinases regulate the cytoskeletal attachment of integrin αIIb β3 (platelet glycoprotein IIb/IIIa) and the cellular retraction. J. Biol. Chem., 169: 32479–32487. Silver, F. H., and Pins, G. (1992) Cell growth on collagen: A review of tissue engineering using scaffolds containing extracellular matrix. J. Long-Term Eff. Med. Impl., 2: 67–80. Szymanovicz, A., and Laurain, G. (1981) An automatic method of 4-hydroxyproline determination convenient for large series. Anal. Biochem., 113: 58–61. Tuan, T. L., and Grinnell, F. (1989) Fibronectin and fibrinolysis are not required for fibrin gel contraction by human skin fibroblasts. J. Cell. Physiol., 140: 577–583. Weiss, P., and Garber, B. (1952) Shape and movement of mesenchyme cells as functions of the physical structure of the medium. Contributions to a quantitative morphology. Proc. Natl. Acad. Sci. U.S.A., 38: 264–280. Werb, Z., Tremble, P. M., Behrendtse, O., Crowley, E., and Damsky, C. H. (1989) Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J. Cell Biol., 109: 877–889. Citing Literature Volume168, Issue1July 1996Pages 188-198 ReferencesRelatedInformation
Referência(s)