Artigo Acesso aberto Revisado por pares

A comparison of nine PLS1 algorithms

2009; Wiley; Volume: 23; Issue: 10 Linguagem: Inglês

10.1002/cem.1248

ISSN

1099-128X

Autores

Martin Andersson,

Tópico(s)

Pesticide Residue Analysis and Safety

Resumo

Abstract Nine PLS1 algorithms were evaluated, primarily in terms of their numerical stability, and secondarily their speed. There were six existing algorithms: (a) NIPALS by Wold; (b) the non‐orthogonalized scores algorithm by Martens; (c) Bidiag2 by Golub and Kahan; (d) SIMPLS by de Jong; (e) improved kernel PLS by Dayal; and (f) PLSF by Manne. Three new algorithms were created: (g) direct‐scores PLS1 based on a new recurrent formula for the calculation of basis vectors yielding scores directly from X and y; (h) Krylov PLS1 with its regression vector defined explicitly, using only the original X and y; (i) PLSPLS1 with its regression vector recursively defined from X and the regression vectors of its previous recursions. Data from IR and NIR spectrometers applied to food, agricultural, and pharmaceutical products were used to demonstrate the numerical stability. It was found that three methods (c, f, h) create regression vectors that do not well resemble the corresponding precise PLS1 regression vectors. Because of this, their loading and score vectors were also concluded to be deviating, and their models of X and the corresponding residuals could be shown to be numerically suboptimal in a least squares sense. Methods (a, b, e, g) were the most stable. Two of them (e, g) were not only numerically stable but also much faster than methods (a, b). The fast method (d) and the moderately fast method (i) showed a tendency to become unstable at high numbers of PLS factors. Copyright © 2009 John Wiley & Sons, Ltd.

Referência(s)
Altmetric
PlumX