Hypoglycemia, brain metabolism, and brain damage
1988; Wiley; Volume: 4; Issue: 2 Linguagem: Inglês
10.1002/dmr.5610040203
ISSN1099-0895
Autores Tópico(s)Mitochondrial Function and Pathology
ResumoDiabetes/Metabolism ReviewsVolume 4, Issue 2 p. 113-144 Hypoglycemia and Counterregulation Hypoglycemia, brain metabolism, and brain damage Bo K. Siesjö, Bo K. Siesjö Laboratory for Experimental Brain Research, Lund University Hospital, SwedenSearch for more papers by this author Bo K. Siesjö, Bo K. Siesjö Laboratory for Experimental Brain Research, Lund University Hospital, SwedenSearch for more papers by this author First published: March 1988 https://doi.org/10.1002/dmr.5610040203Citations: 95AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Siesjö BK: Brain Energy Metabolism, John Wiley & Sons, pp 380–397, 1978. Google Scholar 2 Siesjö BK, and Agardh C-D: Hypoglycemia. In Handbook of Neurochemistry, (Vol 3, 2nd ed, edited by A Lajtha) Plenum Press, New York, pp 353–379, 1983. Google Scholar 3 Auer RN: Progress Review: Hypoglycemic brain damage. Stroke 17: 699–708, 1986. 10.1161/01.STR.17.4.699 CASPubMedWeb of Science®Google Scholar 4 Gibbs EL, Lennox WG, Nims LF, and Gibbs FA: Arterial and cerebral venous blood. Arterial-venous differences in man. J Biol Chem 144: 325–332, 1942. CASWeb of Science®Google Scholar 5 Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, and Cahill GF: Brain metabolism during fasting. J Clin Invest 46 (10): 1589–1595, 1967. 10.1172/JCI105650 CASPubMedWeb of Science®Google Scholar 6 Sokoloff L: Metabolism of ketone bodies by the brain. Ann Rev Med 24: 271–280, 1973. 10.1146/annurev.me.24.020173.001415 CASPubMedWeb of Science®Google Scholar 7 Hawkins RA, Williamson DH, and Krebs HA: Ketone-body utilization by adult and suckling rat brain in vivo. Biochem J 122: 13–18, 1971. 10.1042/bj1220013 CASPubMedWeb of Science®Google Scholar 8 Ruderman NB, Ross PS, Berger M, and Goodman MN: Regulation of glucose and ketone-body metabolism in brain of anaesthetized rats. Biochem J 138: 1–10, 1974. 10.1042/bj1380001 CASPubMedWeb of Science®Google Scholar 9 Nemoto EM, Hoff JT, and Severinghaus JW: Lactate uptake and metabolism by brain during hyper-lactatemia and hypoglycemia. Stroke 5: 48–53, 1974. 10.1161/01.STR.5.1.48 CASPubMedWeb of Science®Google Scholar 10 Sloviter HA, Shimkin P, and Suhara K: Glycerol as a substrate for brain metabolism. Nature 210: 1334–1336, 1966. 10.1038/2101334a0 CASPubMedWeb of Science®Google Scholar 11 Cremer JE: Substrate utilization and brain development. J Cereb Blood Flow Metabol 2: 394–407, 1982. 10.1038/jcbfm.1982.45 CASPubMedWeb of Science®Google Scholar 12 Gardiner RM: The effects of hypoglycaemia on cerebral blood flow and metabolism in the newborn calf. J Physiol 298: 37–51, 1980. 10.1113/jphysiol.1980.sp013065 CASPubMedWeb of Science®Google Scholar 13 Hellmann, Vannucci RC, and Nardis EE: Blood-brain barrier to lactic acid in the newborn dog: Lactate as a cerebral metabolic fuel. Pediatr Res 16: 40–44, 1982. 10.1203/00006450-198201001-00008 CASPubMedWeb of Science®Google Scholar 14 Hernandez MJ, Vannucci RC, Salcedo A, and Brennan RW: Cerebral blood flow and metabolism during hypoglycemia in newborn dogs. J Neurochem 35 (3): 622–628, 1980. 10.1111/j.1471-4159.1980.tb03701.x CASPubMedWeb of Science®Google Scholar 15 Crone C: Facilitated transfer of glucose from blood into brain tissue. J Physiol 181: 103–113, 1965. 10.1113/jphysiol.1965.sp007748 CASPubMedWeb of Science®Google Scholar 16 Pardridge WM, and Oldendorff WH: Transport of metabolic substrates through the blood–brain barrier. J Neurochem 28: 5–12, 1977. 10.1111/j.1471-4159.1977.tb07702.x CASPubMedWeb of Science®Google Scholara Crone C: Substrate supply to the brain. In Advances in Experimental Medicine: A Centenary Tribute to Claude Bernard, edited by Parvez H, and Parvez S, 1980, pp 319–350 Google Scholar 17 Gjedde A: Modulation of substrate transport to the brain. Acta Neurol Scand 67: 3–25, 1983. 10.1111/j.1600-0404.1983.tb04541.x CASPubMedWeb of Science®Google Scholar 18 Pardridge WM: Brain metabolism: a perspective from the blood–brain barrier. Physiol Rev 63 (4): 1481–1535, 1983. 10.1152/physrev.1983.63.4.1481 CASPubMedWeb of Science®Google Scholar 19 Lund-Andersen H: Transport of glucose from blood to brain. Physiol Rev 59 (2): 305–352, 1979. CASPubMedWeb of Science®Google Scholar 20 Bryan RM Jr., Keefer KA, and MacNeill C: Regional cerebral glucose utilization during insulin-induced hypoglycemia in unanesthetized rats. J Neurochem 46: 1904–1911, 1986. 10.1111/j.1471-4159.1986.tb08512.x CASPubMedWeb of Science®Google Scholar 21 Lewis LD, Ljunggren B, Norberg K, and Siesjö BK: Changes in carbohydrate substrates, amino acids and ammonia in the brain during insulin-induced hypoglycemia. J Neurochem 23: 659–671, 1974. 10.1111/j.1471-4159.1974.tb04389.x CASPubMedWeb of Science®Google Scholar 22 Kety SS, and Schmidt CF: The nitrous oxide method for the quantitative determination of cerebral blood flow in man: Theory, procedure and normal values. J Clin Invest 27: 476–483, 1948. 10.1172/JCI101994 CASPubMedWeb of Science®Google Scholar 23 Kety SS, Woodford RB, Harmel MH, Freyhan FA, Appel KE, and Schmidt CF: Cerebral blood flow and metabolism in schizophrenia. Am J Psychiatr 104: 765–770, 1948. 10.1176/ajp.104.12.765 CASPubMedWeb of Science®Google Scholar 24 Eisenberger S, and Seltzer HS: The cerebral metabolic effects of acutely induced hypoglycemia in human subjects. Metabolism 11: 1162–1168, 1962. Google Scholar 25 Della Porta P, Maiolo AT, Negri VU, and Rossella E: Cerebral blood flow and metabolism in therapeutic insulin coma. Metabolism 13: 131–140, 1964. 10.1016/0026-0495(64)90126-X PubMedWeb of Science®Google Scholar 26 Gottstein U, and Held K: Insulinwirkung auf den menschlichen Hirnmetabolismus von Stoffwechselgesunden und Diabetikern. Klin Wschr 45: 18–23, 1967. 10.1007/BF01745733 CASPubMedWeb of Science®Google Scholar 27 Norberg K, and Siesjö BK: Oxidative metabolism of the cerebral cortex of the rat in severe insulin-induced hypoglycemia. J Neurochem 26: 345–352, 1976. 10.1111/j.1471-4159.1976.tb04487.x CASPubMedWeb of Science®Google Scholar 28 Ferrendelli JA, and Chang M-M: Brain metabolism during hypoglycemia. Effect of insulin on regional central nervous system glucose and energy reserve in mice. Arch Neurol 28: 173–177, 1973. 10.1001/archneur.1973.00490210053006 CASPubMedWeb of Science®Google Scholar 29 Ghajar JBG, Plum F, and Duffy TE: Cerebral oxidative metabolism and blood flow during acute hypoglycemia and recovery in unanesthetized rats. J Neurochem 38: 397–409, 1982. 10.1111/j.1471-4159.1982.tb08643.x CASPubMedWeb of Science®Google Scholar 30 Pappenheimer JR, and Setchell BP: Cerebral glucose transport and oxygen consumption in sheep and rabbits. J Physiol (Lond) 233: 529–551, 1973. 10.1113/jphysiol.1973.sp010322 CASPubMedWeb of Science®Google Scholar 31 Lewis LD, Ljunggren B, Ratcheson RA, and Siesjö BK: Cerebral energy state in insulin-induced hypoglycemia, related to blood glucose and to EEG. J Neurochem 23: 673–679, 1974. 10.1111/j.1471-4159.1974.tb04390.x CASPubMedWeb of Science®Google Scholar 32 Feise G, Kogure K, Busto R, Scheinberg P, and Reinmuth OM: Effect of insulin hypoglycemia upon cerebral energy metabolism and EEG activity in the rat. Brain Res 126: 263–280, 1976. 10.1016/0006-8993(77)90725-9 PubMedWeb of Science®Google Scholara Auer RN, Olsson Y, and Siesjö BK: Hypoglycemic brain injury in the rat. Correlation of density of brain damage with the EEG isoelectric time: a quantitative study. Diabetes 33 (10): 1090–1098, 1984. CASPubMedWeb of Science®Google Scholar 33 Gjedde A, Hansen AJ, and Siemkowicz E: Rapid simultaneous determination of regional blood flow and blood–brain glucose transfer in brain of rat. Acta Physiol Scand 108: 321–330, 1980. 10.1111/j.1748-1716.1980.tb06540.x CASPubMedWeb of Science®Google Scholar 34 Cillufo JM, Anderson RE, Sharbrough FW, and Sundt TM Jr.: Correlation of brain blood flow, intracellular pH and metabolism in hypoglycemic cats under halothane and barbiturate anesthesia. Brain Res 216: 125–143, 1981. 10.1016/0006-8993(81)91282-8 CASPubMedWeb of Science®Google Scholar 35 Agardh C-D, Chapman AG, Nilsson B, and Siesjö BK: Endogenous substrates utilized by rat brain in severe insulin-induced hypoglycemia. J Neurochem 36 (2): 490–500, 1981. 10.1111/j.1471-4159.1981.tb01619.x CASPubMedWeb of Science®Google Scholar 36 Holowach Thurston J, Hauhart RE, and Schiro JA: Lactate reverses insulin-induced hypoglycemic stupor in suckling-weanling mice: biochemical correlates in blood, liver, and brain. J Cereb Blood Flow Metabol 3: 498–506, 1983. 10.1038/jcbfm.1983.77 Google Scholar 37 Cremer JE, Braun LD, and Oldendorf WH: Changes during development in transport processes of the blood-brain barrier. Biochim Biophys Acta 448: 633–637, 1976. 10.1016/0005-2736(76)90120-6 CASPubMedWeb of Science®Google Scholar 38 Abdul-Rahman A, Agardh C-D, and Siesjö BK: Local cerebral blood flow in the rat during severe hypoglycemia, and in the recovery period following glucose injection. Acta Physiol Scand 109: 307–314, 1980. 10.1111/j.1748-1716.1980.tb06601.x CASPubMedWeb of Science®Google Scholar 39 Nilsson B, Agardh C-D, Ingvar M, and Siesjö BK: Cerebrovascular response during and following severe insulin-induced hypoglycemia: CO2-sensitivity, autoregulation, and influence of prostaglandin synthesis inhibition. Acta Physiol Scand 111: 455–463, 1981. 10.1111/j.1748-1716.1981.tb06763.x CASPubMedWeb of Science®Google Scholar 40 Siesjö BK, Ingvar M, and Pelligrino D: Regional differences in vascular autoregulation in the rat brain in severe insulin-induced hypoglycemia. J Cereb Blood Flow Metabol 3: 478–485, 1983. 10.1038/jcbfm.1983.74 PubMedWeb of Science®Google Scholara Bryan RM, Jr. Hollinger BR, Keefer KA, and Page RB: Regional cerebral and neural lobe blood flow during insulin-induced hypoglycemia in unanesthetized rats. J Cereb Blood Flow Metabol 7: 96–102, 1987. 10.1038/jcbfm.1987.14 CASPubMedWeb of Science®Google Scholar 41 Tews JK, Carter SH, and Stone WE: Chemical changes in the brain during insulin hypoglycemia and recovery. J Neurochem 12: 679–693, 1965. 10.1111/j.1471-4159.1965.tb06782.x CASPubMedWeb of Science®Google Scholar 42 Ratcheson RA, Blank AC, and Ferrendelli JA: Regionally selective metabolic effects of hypoglycemia in brain. J Neurochem 36: 1952–1958, 1981. 10.1111/j.1471-4159.1981.tb10820.x CASPubMedWeb of Science®Google Scholar 43 Goldberg ND, Passonneau JV, and Lowry OH: Effects of changes in brain metabolism on the levels of citric acid cycle intermediates. J Biol Chem 241 (17): 3997–4003, 1966. CASPubMedGoogle Scholar 44 Gorell JM, Dolkart PH, and Ferrendelli JA: Regional levels of glucose, amino acids, high energy phosphates, and cyclic nucleotides in the central nervous system during hypoglycemic stupor and behavioral recovery. J Neurochem 27: 1043–1049, 1976. 10.1111/j.1471-4159.1976.tb00306.x CASPubMedWeb of Science®Google Scholar 45 Chance B, and Williams GR: Respiratory enzymes in oxidative phosphorylation. I-III. J Biol Chem 217: 383–427, 1955. CASPubMedWeb of Science®Google Scholar 46 Benzi G, Pastoris O, Villa RF, and Giuffrida AM: Effect of aging on cerebral cortex energy metabolism in hypoglycemia and posthypoglycemic recovery. Neurobiol Aging 5: 205–212, 1984. 10.1016/0197-4580(84)90064-2 CASPubMedWeb of Science®Google Scholar 47 Bryan RM Jr., and Jobsis FF: The cerebral redox state in cats during severe insulin induced hypoglycemia. Brain Res 279: 266–270, 1983. 10.1016/0006-8993(83)90190-7 CASPubMedWeb of Science®Google Scholar 48 Dawson RMC: Studies on the glutamine and glutamic acid content of the rat brain during insulin hypoglycemia. Biochem J 47: 386–391, 1950. 10.1042/bj0470386 CASPubMedWeb of Science®Google Scholar 49 Cravioto RO, Massieu G, and Izquierdo JJ: Free amino-acids in rat brain during insulin shock. Proc. Soc Exp Biol Med 78: 856–858, 1951. 10.3181/00379727-78-19241 CASPubMedWeb of Science®Google Scholar 50 De Ropp RS, and Snedekor EH: Effect of drugs on amino acid levels in the rat brain: hypoglycemic agents. J Neurochem 7: 128–134, 1961. 10.1111/j.1471-4159.1961.tb13605.x CASWeb of Science®Google Scholar 51 Jacobson KB: Studies on the role of N-acetylaspartic acid in mammalian brain. J Gen Physiol 43: 323–333, 1959. 10.1085/jgp.43.2.323 CASPubMedWeb of Science®Google Scholar 52 Mukherji B, Turinsky J, and Sloviter HA: Effects of perfusion without glucose on amino acids and glycogen of isolated rat brain. J Neurochem 18: 1783–1785, 1971. 10.1111/j.1471-4159.1971.tb03756.x CASPubMedWeb of Science®Google Scholar 53 Konitzer K, Solle M, and Voigt S: Wirkung von Insulin auf den Hirnstoffwechsel. Acta Biol Med German 15: 461–479. Google Scholar 54 Agardh C-D, Folbergrová J, and Siesjö BK: Cerebral metabolic changes in profound, insulin-induced hypoglycemia, and in the recovery period following glucose administration. J Neurochem 31: 1135–1142, 1978. 10.1111/j.1471-4159.1978.tb06236.x CASPubMedWeb of Science®Google Scholar 55 Lowenstein JM: Ammonia production in muscle and other tissues: the purine nucleotide cycle. Physiol Rev 52: 382–414, 1972. 10.1152/physrev.1972.52.2.382 CASPubMedWeb of Science®Google Scholar 56 Wieloch T, and Siesjö BK: Ischemic brain injury: the importance of calcium, lipolytic activities, and free fatty acids. Pathol Biol 30 (5): 269–277, 1982. CASPubMedWeb of Science®Google Scholar 57 Siesjö BK, and Wieloch T: Cerebral metabolism in ischaemia: neurochemical basis for therapy. Br J Anaesth 57: 47–62, 1985. 10.1093/bja/57.1.47 CASPubMedWeb of Science®Google Scholar 58 Knauff HG, Marx D, and Mayer G: Das Verhalten der Proteine und der serin- und colaminhaltigen Phosphatide des Zentralnervensystems während der Insulinhypoglykämie. Hoppe-Seylers Z Physiol Chem 326: 227–234, 1961. 10.1515/bchm2.1961.326.1.227 CASPubMedWeb of Science®Google Scholar 59 Hinzen DH, Becker P, and Müller U: Einfluss von Insulin auf den regionalen Phospholipidstoffwechsel des Kaninchengehirns in vivo. Pflügers Arch ges Physiol 321: 1–14, 1970. 10.1007/BF00594119 CASPubMedWeb of Science®Google Scholar 60 Wieloch T, Harris RJ, Symon L, and Siesjö BK: Influence of severe hypoglycemia on brain extracellular calcium and potassium activities, energy, and phospholipid metabolism. J Neurochem 43: 160–168, 1984. 10.1111/j.1471-4159.1984.tb06692.x CASPubMedWeb of Science®Google Scholar 61 Kiessling M, Weigel K, Gartzen D, and Kleihues P: Regional heterogeneity of L-3-3H tyrosine incorporation into rat brain proteins during severe hypoglycemia. J Cereb Blood Flow Metabol 2: 249–253, 1982. 10.1038/jcbfm.1982.25 CASPubMedWeb of Science®Google Scholar 62 Kiessling M, Xie Y, and Kleihues P: Regionally selective inhibition of cerebral protein synthesis in the rat during hypoglycemia and recovery. J Neurochem 43: 1507–1514, 1984. 10.1111/j.1471-4159.1984.tb06070.x CASPubMedWeb of Science®Google Scholar 63 Samson FE, Dahl DR, Dahl N, and Himwich HE: Studies of the hypoglycemic brain. Arch Neurol Psychiat 81: 458–465, 1959. 10.1001/archneurpsyc.1959.02340160056008 CASPubMedWeb of Science®Google Scholar 64 Hinzen DH, and Müller U: Energiestoffwechsel und Funktion des Kaninchengehirns während Insulinhypoglykämie. Pflügers Arch 322: 47–59, 1971. 10.1007/BF00586664 CASPubMedWeb of Science®Google Scholar 65 Chapman AG, Westerberg E, and Siesjö BK: The metabolism of purine and pyrimidine nucleotides in rat cortex during insulin-induced hypoglycemia and recovery. J Neurochem 36 (1): 179–189, 1981. 10.1111/j.1471-4159.1981.tb02393.x CASPubMedWeb of Science®Google Scholara Behar KL, den Hollander JA, Petroff OAC, Hetherington HP, Prichard JW, and Shulman RG: Effect of hypoglycemic encephalopathy upon amino acids, high-energy phosphates, and pHi in the rat brain In Vivo: Detection by sequential 1H and 31P NMR spectroscopy. J Neurochem 44: 1045–1055, 1985. 10.1111/j.1471-4159.1985.tb08723.x CASPubMedWeb of Science®Google Scholar 66 Harris RJ, Wieloch T, Symon L, and Siesjö BK: Cerebral extracellular calcium activity in severe hypoglycemia: relation to extracellular potassium and energy state. J Cereb Blood Flow Metabol 4: 187–193, 1984. 10.1038/jcbfm.1984.27 CASPubMedWeb of Science®Google Scholar 67 Astrup J, and Norberg K: Potassium activity in cerebral cortex in rats during progressive severe hypoglycemia. Brain Res 103: 418–423, 1976. 10.1016/0006-8993(76)90817-9 CASPubMedWeb of Science®Google Scholar 68 Hansen AJ: Effect of anoxia on ion distribution in the brain. Physiol Rev 65 (1): 101–148, 1985. 10.1152/physrev.1985.65.1.101 CASPubMedWeb of Science®Google Scholar 69 Hossmann K-A: Treatment of experimental cerebral ischemia. J Cereb Blood Flow Metabol 2: 275–297, 1982. 10.1038/jcbfm.1982.30 CASPubMedWeb of Science®Google Scholar 70 Pelligrino D, Almquist L-O, and Siesjö BK: Effects on insulin-induced hypoglycemia on intracellular pH and impedance in the cerebral cortex of the rat. Brain Res 221: 129–147, 1981. 10.1016/0006-8993(81)91068-4 CASPubMedWeb of Science®Google Scholar 71 Ellison RJ, Wilson WP, and Weiss EB: Changes in cerebral potassium during insulin hypoglycemia. Proc Soc Exp Biol Med 98: 128–129, 1958. 10.3181/00379727-98-23962 CASPubMedWeb of Science®Google Scholar 72 Arieff AI, Doerner T, Zelig H, and Massry SG: Mechanisms of seizures and coma in hypoglycemia. Evidence for a direct effect of insulin on electrolyte transport in brain. J Clin Invest 54: 654–663, 1974. 10.1172/JCI107803 CASPubMedGoogle Scholar 73 Holowach Thurston J, Hauhart RE, and Dirgo JA: Insulin and brain metabolism. Absence of direct action of insulin on K+ and Na+ transport in mouse brain. Diabetes 25: 758–763, 1976. 10.2337/diabetes.25.9.758 PubMedWeb of Science®Google Scholara Seisjö BK, and Deshpande JK: Electrolyte shifts between brain and plasma in hypoglycemic coma. J Cereb Blood Flow Metabol. In press. Google Scholarb Siesjö BK: Acid-homeostasis in the brain: physiology, chemistry, and neurochemical pathology. In Progress in Brain Research, Vol 63, edited by K Kogure, K-A Hossmann, BK Siesjö, FA Welsh, Elsevier Science Publishers BV, pp. 121–154, 1985. 10.1016/S0079-6123(08)61980-9 Web of Science®Google Scholar 74 Marshall C, McCulloch WS, and Nims LF: (1939) pH of the cerebral cortex and arterial blood under insulin. Am J Physiol 125: 680–682, 1939. CASWeb of Science®Google Scholar 75 Cillufo JM, Anderson RE, Michenfelder JD, and Sundt TM Jr.: Cerebral blood flow, brain pH, and oxidative metabolism in the cat during severe insulin-induced hypoglycemia. J Cereb Blood Flow Metabol 2: 337–346, 1982. 10.1038/jcbfm.1982.34 Google Scholar 76 Astrup J, Heuser D, Lassen NA, Nilsson B, Norberg K, and Siesjö BK: Evidence against H+ and K+ as main factors for the control of cerebral blood flow: a microelectrode study. In Cerebral Vascular Smooth Muscle and its Control, Ciba Foundation Symposium 56, edited by M Purves, Excerpta Medica, Amsterdam—Oxford—New York, 1978, pp 313–337. 10.1002/9780470720370.ch16 Google Scholar 77 Leniger-Follert E, and Gronczewski J: Local extracellular H+ activity as one factor contributing to the increase of cerebral blood flow during severe hypoglycemia. Int J Microcirc 1: 289–290, 1982. Google Scholar 78 Mutch WAC, and Hansen AJ: Brain extracellular pH changes during alterations in substrate supply. Ion measurements. In Physiology and Medicine, edited by ( M Kessler, et al, Springer-Verlag, Berlin, Heidelberg, 1985, pp 189–193. Google Scholar 79 Pelligrino D, and Siesjö BK: Regulation of extra- and intracellular pH in the brain in severe hypoglycemia. J Cereb Blood Flow Metabol 1: 85–96, 1981. 10.1038/jcbfm.1981.9 CASPubMedWeb of Science®Google Scholar 80 Pelligrino D, Yokoyama H, Ingvar M, and Siesjö BK: Moderate arterial hypotension reduces cerebral cortical blood flow and enhances cellular release of potassium in severe hypoglycemia. Acta Physiol Scand 115: 511–513, 1982. 10.1111/j.1748-1716.1982.tb07113.x CASPubMedWeb of Science®Google Scholar 81 Auer RN, Hall P, Ingvar M, and Siesjö BK: Hypotension as a complication of hypoglycemia leads to enhanced energy failure but no increase in neuronal necrosis. Stroke 17 (3): 442–449, 1986. 10.1161/01.STR.17.3.442 PubMedWeb of Science®Google Scholar 82 Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, and Shinohara M: The 14C deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897–916, 1977. 10.1111/j.1471-4159.1977.tb10649.x CASPubMedWeb of Science®Google Scholar 83 Abdul-Rahman A, and Siesjö BK: Local cerebral glucose consumption during insulin-induced hypoglycemia, and in the recovery period following glucose administration. Acta Physiol Scand 110: 149–159, 1980. 10.1111/j.1748-1716.1980.tb06645.x CASPubMedWeb of Science®Google Scholara Paschen W, Siesjö BK, Ingvar M and Hossmann K-A: Regional differences in brain glucose content in graded hypoglycemia. Neurochem Pathol 5: 131–142, 1986. CASPubMedWeb of Science®Google Scholar 84 Kiessling M, Auer RN, Kleihues P, and Siesjö BK: Cerebral protein synthesis during long-term recovery from severe hypoglycemia. J Cereb Blood Flow Metabol 6: 42–51, 1986. 10.1038/jcbfm.1986.6 CASPubMedWeb of Science®Google Scholar 85 Hawkins RA, Mans AM, Davis DW, Vina JR, and Hibbard LS: Cerebral glucose use measured with 14C glucose labeled in the 1, 2, or 6 position. Am J Physiol 248: C170–C176, 1985. CASPubMedWeb of Science®Google Scholar 86 Agardh C-D, Kalimo H, Olsson Y, and Siesjö BK: Hypoglycemic brain injury: metabolic and structural findings in rat cerebellar cortex during profound insulin-induced hypoglycemia and in the recovery period following glucose administration. J Cereb Blood Flow Metabol 1: 71–84, 1981. 10.1038/jcbfm.1981.8 CASPubMedWeb of Science®Google Scholar 87 Agardh C-D, and Siesjö BK: Hypoglycemic brain injury: phospholipids, free fatty acids, and cyclic nucleotides in the cerebellum of the rat after 30 and 60 minutes of severe insulin-induced hypoglycemia. J Cereb Blood Flow Metabol 1: 267–275, 1981. 10.1038/jcbfm.1981.31 CASPubMedWeb of Science®Google Scholar 88 McCandless DW: Insulin-induced hypoglycemic coma and regional cerebral energy metabolism. Brain Res 215: 225–233, 1981. 10.1016/0006-8993(81)90504-7 CASPubMedWeb of Science®Google Scholar 89 Siesjö BK, and Plum F: Pathophysiology of anoxic brain damage (Chapter). In Biology of Brain Dysfunction, (Vol 1, edited by Gaull GE), pp 319–372, 1972. Google Scholar 90 Tucek S, and Cheng S-H: Provenance of the acetyl group of acetylcholine and compartmentation of acetyl-CoA and Krebs cycle intermediates in the brain in vivo. J Neurochem 22: 893–914, 1974. 10.1111/j.1471-4159.1974.tb04314.x CASPubMedWeb of Science®Google Scholara Gibson GE and Blass JP: Impaired synthesis of acetylcholine in brain accompanying mild hypoxia and hypoglycemia. J Neurochem 27: 37–42, 1976. 10.1111/j.1471-4159.1976.tb01540.x CASPubMedWeb of Science®Google Scholar 91 Goldfien A: Effects of glucose deprivation on the sympathetic outflow to the adrenal medulla and adipose tissue. Pharmacol Rev 18 (1): 303–311, 1966. CASPubMedWeb of Science®Google Scholar 92 Cantu RC, Correll JW, and Manger WM: Reassessment of central neural pathways necessary for adrenal catecholamine output in response to hypoglycemia. Proc Soc Exp Biol Med 129: 155–161, 1968. 10.3181/00379727-129-33273 CASPubMedWeb of Science®Google Scholar 93 MacKenzie RG, and Trulson ME: Effects of insulin and streptozotocin induced diabetes on brain tryptophan and serotonin metabolism in rats. J Neurochem 30: 205–211, 1978. 10.1111/j.1471-4159.1978.tb07053.x CASPubMedWeb of Science®Google Scholar 94 Agardh C-D, Carlsson A, Lindqvist M, and Siesjö BK: The effect of pronounced hypoglycemia on monoamine metabolism in rat brain. Diabetes 28 (9): 804–809, 1979. 10.2337/diab.28.9.804 CASPubMedWeb of Science®Google Scholar 95 Auer RN, Wieloch T, Olsson Y, and Siesjö BK: The distribution of hypoglycemic brain damage. Acta Neuropathol (Berl) 64: 177–191, 1984. 10.1007/BF00688108 CASPubMedWeb of Science®Google Scholar 96 Brierly JB, Brown AW, and Meldrum BS: The nature and time course of the neuronal alterations resulting from oligaemia and hypoglycemia in the brain of Macaca mulatta. Brain Res 25: 483–499, 1971. 10.1016/0006-8993(71)90456-2 PubMedWeb of Science®Google Scholar 97 Myers RE, and Kahn KJ: Insulin-induced hypoglycemia in the non-human primate. II. Long-term neuropathological consequences. In Brain Hypoxia, Clinics in Developmental Medicine No. 39/40, edited by JB Brierley, and BS Meldrum, chap 20, pp 195–206, 1971. Google Scholar 98 Meyer A: Intoxications. In Greenfield's Neuropathology, edited by W Blackwood, WH McMenemey, A Meyer, RM Norman, and DS Russel, Arnold, London, 1963, pp 235–287. Google Scholar 99 Brierly JB: Cerebral hypoxia. In Greenfield's Neuropathology, 3rd ed, edited by W Blackwood and JAN Corsellis, Edward Arnold Publishers Ltd, London, chap 2, pp 43–85 1976. Google Scholar 100 Fazekas JF, Alman RW, and Parrish AE: Irreversible post-hypoglycemic coma. Am J Med Sci 222: 640–643, 1951. 10.1097/00000441-195112000-00004 CASPubMedWeb of Science®Google Scholar 101 Plum F, and Posner JB: The Diagnosis of Stupor and Coma, 3rd ed. FA Davis Company, Philadelphia, PA, 1980. Google Scholar 102 Agardh C-D, Chapman AG, Pelligrino D and Siesjö BK: Influence of severe hypoglycemia on mitochondrial and plasma membrane function in rat brain. J Neurochem 38: 662–668, 1982. 10.1111/j.1471-4159.1982.tb08682.x CASPubMedGoogle Scholar 103 Brierley JB, and Brown AW: Remarks on the papers by C-D Argardh et al/H Kalimo et al "Hypoglycemic brain injury, I, II." Acta Neuropathol (Berl) 55: 319–322, 1981. 10.1007/BF00690996 CASPubMedWeb of Science®Google Scholar 104 Agardh C-D, Kalimo H, Olsson Y, and Siesjö BK: Reply to the remarks by JB Brierley and AW Brown. Acta Neuropathol (Berl) 55: 323–325, 1981. 10.1007/BF00690997 CASPubMedWeb of Science®Google Scholar 105 Auer RN, Kalimo H, Olsson Y, and Siesjö BK: The temporal evolution of hypoglycemic brain damage. I: light- and electron-microscopic findings in the rat cerebral cortex. Acta Neuropathol (Berl) 67: 13–24, 1985. 10.1007/BF00688120 CASPubMedWeb of Science®Google Scholar 106 Kalimo H, Auer RN, and Siesjö BK: The temporal evolution of hypoglycemic brain damage. III. Light and electron microscopic findings in the rat caudoputamen. Acta Neuropathol (Berl) 67: 37–50, 1985. 10.1007/BF00688122 CASPubMedWeb of Science®Google Scholar 107 Weil A, Liebert E, and Heilbrunn G: Histopathologic changes in the brain in experimental hyperinsulinism. Arch Neurol Psych 39: 469–481, 1938. 10.1001/archneurpsyc.1938.02270030045003 Google Scholar 108 Watkins JC: Excitatory amino acids and central synaptic transmission. TIPS Sept: 373–376, 1984. Google Scholar 109 Collingridge GJ: Long-term potentiation in the hippocampus: mechanisms of initiation and modulation by neurotransmitters. TIPS 6: 407–411, 1985. 10.1016/0165-6147(85)90192-0 CASWeb of Science®Google Scholar 110 Fagg GE, Foster AC and Ganong AH: Excitatory amino acid synaptic mechanisms and neurological function. TIPS Sept: 357–363, 1986. Google Scholar 111 Mayer ML and Westbrook GL: The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 28: 197–276, 1987. 10.1016/0301-0082(87)90011-6 CASPubMedWeb of Science®Google Scholar 112 Olney J: Neurotoxicity of excitatory amino acids. In Kainic as a Tool in Neurobiology, edited by EG McGeer, JW Olney, and PL McGeer, Raven Press, New York, 1978, pp 95–121. Google Scholar 113 Coyle JT, Bird SJ, Evans RH, Bulley RL, Nadler JV, Nicklas WJ, and Olney JW: Excitatory amino acid neurotoxins: selectivity, specificity, and mechanisms of action. Neurosci Res Progr 19: 330–427, 1981. Google Scholar 114 Schwarcz R, Foster AC, French ED, Whetsell WO Jr., and Köhler C: Excitotoxic models for neurodegenerative disorders. Life Sci 35: 19–32, 1984. 10.1016/0024-3205(84)90148-6 CASPubMedWeb of Science®Google Scholar 115 Schwarcz R, Foster AC, French ED, Whetsell WO Jr., and Köhler C: Current Topics II. Excitotoxic models for neurodegenerative disorders. Life Sci 35: 19–32, 1984. 10.1016/0024-3205(84)90148-6 CASPubMedWeb of Science®Google Scholar 116 Jørgensen MB and Diemer NH: Selective neuron loss after cerebral ischemia in the rat: possible role of transmitter glutamate. Acta Neurol Scand 66: 536–546, 1982. 10.1111/j.1600-0404.1982.tb03140.x PubMedWeb of Science®Google Scholar 117 Benveniste H, Drejer J, Schousboe A, and Diemer NH: Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43: 1369–1374, 1984. 10.1111/j.1471-4159.1984.tb05396.x CASPubMedWeb of Science®Google Scholar 118 Rothman S: Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J Neurosci 4 (7): 1884–1891, 1984 CASPubMedWeb of Science®Google Scholar 119 Simon RP, Swan JH, Griffiths T, and Meldrum BS: Blockade of n-methyl-d-aspartate receptors may protect against ischemic damage in the brain. Science 226: 850–852, 1984. 10.1126/science.6093256 CASPubMedWeb of Science®Google Scholar 120 Wieloch T: Hypoglycemia-induced neuronal damage prevented by an N-methyl-D-aspartate antagonist. Science 230: 681–683, 1985. 10.1126/science.2996146 CASPubMedWeb of Science®Google Scholar 121 Wieloch T: Neurochemical correlates to regional selective neuronal vulnerability. In Progress in Brain Research, Vol 63, edited by K Kogure, K-A Hossmann, BK Siesjö, FA Welsh, Elsevier Science Publishers BV, pp. 69–85, 1985. Web of Science®Google Scholar 122 Rothman SM and Olney JW: Glutamate and the pathophysiology of hypoxic–ischemic brain damage. Ann Neurol 19: 105–111, 1986. 10.1002/ana.410190202 CASPubMedWeb of Science®Google Scholar 123 Sandberg M, Butcher SP, and Hagberg H: Extracellular overflow of neuroactive amino acids during severe insulin-induced hypoglycemia: in vivo dialysis of the rat hippocampus. J Neurochem 47: 178–185, 1986. 10.1111/j.1471-4159.1986.tb02847.x CASPubMedWeb of Science®Google Scholar 124 Wieloch T, Auer R, Westerberg E, Tossman U, and Ungerstedt U: Hypoglycemic brain damage is mediated by excitotoxins. In Excitatory Amino Acids, edited by P Roberts, McMillan, New York, 1986. Google Scholar 125 Wieloch T, Engelsen B, Westerberg E, and Auer R: Lesions of the glutamatergic cortico-striatal projections in the rat ameliorate hypoglycemic brain damage in the striatum. Neurosci Lett 58: 25–30, 1985. 10.1016/0304-3940(85)90323-4 CASPubMedWeb of Science®Google Scholar 126 Lindvall O, Auer RN, and Siesjö BK: Selective lesions of mesostriatal dopamine neurons ameliorate hypoglycemic damage in the caudate-putamen. Exp Brain Res, 1986, in press. Google Scholar 127 Siesjö BK: Damage in the brain: a speculative synthesis. J Cereb Blood Flow Metabol 1: 155–185, 1981. 10.1038/jcbfm.1981.18 CASPubMedWeb of Science®Google Scholar 128 McDermott AB, Mayer ML, Westbrook GL, Smith SJ, and Barker JL: NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurons. Nature 321: 519–522, 1986. 10.1038/321519a0 CASPubMedWeb of Science®Google Scholar 129 Mayer M: Two channels reduced to one. Nature 325: 480–481, 1987. 10.1038/325480a0 CASPubMedWeb of Science®Google Scholar 130 van Harreveld A: The extracellular space in the vertebrate central nervous system. In The Structure and Function of Nervous Tissue, Vol IV, edited by GH Bourne Academic, New York, pp. 447–511, 1972. 10.1016/B978-0-12-119284-6.50015-4 Google Scholar 131 Choi DW: Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett 58: 293–297, 1985. 10.1016/0304-3940(85)90069-2 CASPubMedWeb of Science®Google Scholar 132 Choi DW: Ionic dependence of glutamate neurotoxicity. J Neurosci 7 (2): 369–379, 1987. Google Scholar 133 Siesjö BK: Historical Overview: calcium, ischemia and death of brain cells. Ann NY Acad Sci, 1987 (In press). Google Scholar Citing Literature Volume4, Issue2March 1988Pages 113-144 ReferencesRelatedInformation
Referência(s)