Revisão Revisado por pares

Halothane Hepatotoxicity: Relation Between Metabolic Activation, Hypoxia, Covalent Binding, Lipid Peroxidation and Liver Cell Damage

1983; Lippincott Williams & Wilkins; Volume: 3; Issue: 4 Linguagem: Inglês

10.1002/hep.1840030421

ISSN

1527-3350

Autores

Herbert de Groot, Thomas Noll,

Tópico(s)

Liver Disease and Transplantation

Resumo

HepatologyVolume 3, Issue 4 p. 601-606 ArticleFree Access Halothane Hepatotoxicity: Relation Between Metabolic Activation, Hypoxia, Covalent Binding, Lipid Peroxidation and Liver Cell Damage Herbert De Groot, Corresponding Author Herbert De Groot Institut für Physiologische Chemie I der Universität Düsseldorf, Moorenstrasse 5, D-4000 Düsseldorf, West GermanyHerbert de Groot, M.D., Institut für Physiologische Chemie I der Universität Düsseldorf, Moorenstrasse 5, D-4000 Dusseldorf, West Germany.===Search for more papers by this authorThomas Noll, Thomas Noll Institut für Physiologische Chemie I der Universität Düsseldorf, Moorenstrasse 5, D-4000 Düsseldorf, West GermanySearch for more papers by this author Herbert De Groot, Corresponding Author Herbert De Groot Institut für Physiologische Chemie I der Universität Düsseldorf, Moorenstrasse 5, D-4000 Düsseldorf, West GermanyHerbert de Groot, M.D., Institut für Physiologische Chemie I der Universität Düsseldorf, Moorenstrasse 5, D-4000 Dusseldorf, West Germany.===Search for more papers by this authorThomas Noll, Thomas Noll Institut für Physiologische Chemie I der Universität Düsseldorf, Moorenstrasse 5, D-4000 Düsseldorf, West GermanySearch for more papers by this author First published: 1983 https://doi.org/10.1002/hep.1840030421Citations: 67AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat References 1 Bunker JP, Gardner Child C, Davidson CS, et al. Summary of the national halothane study. JAMA 1966; 197: 121– 134. 2 Blackburn WR, Ngai SH, Lindenbaum J. Morphologic changes in hepatic necrosis following halothane anesthesia in man. Anesthesiology 1964; 25: 270– 283. 3 Carney FMT, Van Dyke RA. Halothane hepatitis: a critical review. Anesthesia and Analgesia 1972; 51: 135– 160. 4 Trey C, Lipworth L, Chalmers TC, et al. Fulminant hepatic failure. Presumable contribution of halothane. N Engl J Med 1968; 279: 798– 801. 5 Wright R, Eade OE, Chisholm M, et al. Controlled prospective study of the effect on liver function of multiple exposures to halothane. Lancet 1975; 1: 817– 820. 6 Trowell J, Peto R, Smith AC. Controlled trial of repeated halothane anaesthetics in patients with carcinoma of the uterine cervix treated with radium. Lancet 1975; 1: 821– 824. 7 Peters RL, Edmondson HA, Reynolds TB, et al. Hepatic necrosis associated with halothane anesthesia. Am J Med 1969; 47: 748– 764. 8 Klion FM, Schaffner F, Popper H. Hepatitis after exposure to halothane. Ann Intern Med 1969; 71: 467– 477. 9 Tygstrup N. Halothane hepatitis. Lancet 1963; 2: 466– 467. 10 Belfrage S, Ahlgren I, Axelson S. Halothane hepatitis in an anaesthetist. Lancet 1966; 1: 1466– 1467. 11 Rodriguez M, Paronetto F, Schaffner F, et al. Antimitochondrial antibodies in jaundice following drug administration. JAMA 1969; 208: 148– 150. 12 Paronetto F, Popper H. Lymphocyte stimulation induced by halothane in patients with hepatitis following exposure to halothane. N Engl J Med 1970; 283: 277– 280. 13 Neuberger J, Vergani D, Mieli-Vergani G, et al. Hepatic damage after exposure to halothane in medical personnel. Br J Anaesth 1981; 53: 1173– 1177. 14 Stencer RJ, Johnson EA. Effects of phenobarbital pretreatment on the response of rat liver to halothane administration. Proc Soc Exp Biol Med 1972; 140: 1319– 1324. 15 Reynolds ES, Moslen MT. Liver injury following halothane anesthesia in phenobarbital-pretreated rats. Biochem Pharmacol 1974; 23: 189– 195. 16 Sipes IG, Brown BR Jr. An animal model of hepatotoxicity associated with halothane anesthesia. Anesthesiology 1976; 45: 622– 628. 17 McLain GE, Sipes IG, Brown BR Jr. An animal model of halothane Vol. 3, No. 4, 1983 hepatotoxicity: roles of enzyme induction and hypoxia. Anesthesiology 1979; 51: 321– 326. 18 Ross WT Jr, Daggy BP, Cardell RR Jr. Hepatic necrosis caused by halothane and hypoxia in phenobarbital-treated rats. Anesthesiology 1979; 51: 327– 333. 19 Jee RC, Sipes IG, Gandolfi AJ, et al. Factors influencing halothane hepatotoxicity in the rat hypoxic model. Toxicol Appl Pharmacol 1980; 52: 267– 277. 20 Harper MH, Collins P, Johnson B, et al. Hepatic injury following halothane, enflurane, and isoflurane anesthesia in rats. Anesthesiology 1982; 56: 14– 17. 21 Van Dyke RA, Chenoweth MB, Van Poznak A. Metabolism of volatile anesthetics. I. Conversion in vivo of several anesthetics to 14CO2 and chloride. Biochem Pharmacol 1964; 13: 1239– 1247. 22 Rehder K, Forbes J, Alter H, et al. Halothane biotransformation in man: a quantitative study. Anesthesiology 1967; 28: 711– 715. 23 Van Dyke RA, Chenoweth MB. The metabolism of volatile anesthetics. II. In vitro metabolism of methoxyflurane and halothane in rat liver slices and cell fractions. Biochem Pharmacol 1965; 14: 603– 609. 24 Cohen EN, Hood N. Application of low-temperature autoradiography to studies of the uptake and metabolism of volatile anesthetics in the mouse. III. Halothane. Anesthesiology 1969; 31: 553– 559. 25 Cohen EN. Metabolism of halothane-214C in the mouse. Anesthesiology 1969; 31: 560– 565. 26 Karashima D, Hirokata Y, Shigematsu A, et al. The in vitro metabolism of halothane (2-bromo-2-chloro-l,l,l-trifluoroethane) by hepatic microsomal cytochrome P-450. J Pharmacol Exp Ther 1977; 203: 409– 416. 27 Mansuy D, Nastainczyk W, Ullrich V. The mechanism of halothane binding to microsomal cytochrome P-450. Naunyn Schmiedebergs Arch Pharmacol 1974; 285: 315– 324. 28 Nastainczyk W, Ullrich V, Sies H. Effect of oxygen concentration on the reaction of halothane with cytochrome P-450 in liver microsomes and isolated perfused rat liver. Biochem Pharmacol 1978; 27: 387– 392. 29 Fujii K, Morio M, Kikuchi H. A possible role of cytochrome P-450 in anaerobic dehalogenation of halothane. Biochem Biophys Res Commun 1981; 101: 1158– 1163. 30 Fujii K, Miki N, Sugiyama T, et al. Anaerobic dehalogenation of halothane by reconstituted liver microsomal cytochrome P-450 enzyme system. Biochem Biophys Res Commun 1981; 102: 507– 512. 31 Ahr HJ, King LJ, Nastainczyk W, et al. The mechanism of reductive dehalogenation of halothane by liver cytochrome P-450. Biochem Pharmacol 1982; 31: 383– 390. 32 Poyer JL, McCay PB, Weddle CC, et al. In vivo spin-trapping of radicals formed during halothane metabolism. Biochem Pharmacol 1981; 30: 1517– 1519. 33 Plummer JL, Beckwith ALJ, Bastin FN, et al. Free radical formation in vivo and hepatotoxicity due to anesthesia with halothane. Anesthesiology 1982; 57: 160– 166. 34 Mukai S, Morio M, Fujii K, et al. Volatile metabolites of halothane in the rabbit. Anesthesiology 1977; 47: 248– 251. 35 Gourlay GK, Adams JF, Cousins MJ, et al. Time-course of formation of volatile reductive metabolites of halothane in humans and an animal model. Br J Anaesth 1980; 52: 331– 336. 36 Maiorino RM, Sipes IG, Gandolfi AJ, et al. Factors affecting the formation of chlorotrifluoroethane and chlorodifluoroethylene from halothane. Anesthesiology 1981; 54: 383– 389. 37 Sharp JH, Trudell JR, Cohen EN. Volatile metabolites and decomposition products of halothane in man. Anesthesiology 1979; 50: 2– 8. 38 Van Dyke RA. Metabolism of volatile anesthetics. III. Induction of microsomal dechlorinating and ether-cleaving enzymes. J Pharmacol Exp Ther 1966; 154: 364– 369. 39 Sipes IG, Gandolfi AJ, Pohl LR, et al. Comparison of the biotransformation and hepatotoxicity of halothane and deuterated halothane. J Pharmacol Exp Ther 1980; 214: 716– 720. 40 Walton B, Simpson BR, Strunin L, et al. Unexplained hepatitis following halothane. Br Med J 1976; 1: 1171– 1176. 41 Bentley JB, Vaughan RW, Gandolfi AJ, et al. Halothane biotransformation in obese and nonobese patients. Anesthesiology 1982; 57: 94– 97. 42 Van Dyke RA. Hepatic centrilobular necrosis in rats after exposure to halothane, enflurane, or isoflurane. Anesthesia and Analgesia 1982; 61: 812– 819. 43 Shingu K, Eger II EI, Johnson BH. Hypoxia per se can produce hepatic damage without death in rats. Anesthesia and Analgesia 1982; 61: 820– 823. 44 Van Dyke RA, Wood CL. Binding of radioactivity from 14C-labeled halothane in isolated perfused rat livers. Anesthesiology 1973; 38: 328– 332. 45 Uehleke H, Hellmer KH, Tabarelli-Poplawski S. Metabolic activation of halothane and its covalent binding to liver endoplasmic proteins in vitro. Naunyn Schmiedebergs Arch Pharmacol 1973; 279: 39– 52. 46 Van Dyke RA, Gandolfi AJ. Studies on irreversible binding of radioactivity from (14C)halothane to rat hepatic microsomal lipids and protein. Drug Metab Dispos 1974; 2: 469– 476. 47 Van Dyke RA, Wood CL. In vitro studies on irreversible binding of halothane metabolite to microsomes. Drug Metab Dispos 1975; 3: 51– 57. 48 Widger LA, Gandolfi AJ, Van Dyke RA. Hypoxia and halothane metabolism in vivo: release of inorganic fluoride and halothane binding to cellular constituents. Anesthesiology 1976; 44: 197– 201. 49 Wood CL, Gandolfi AJ, Van Dyke RA. Lipid binding of a halothane metabolite. Relationship to lipid peroxidation in vitro. Drug Metab Dispos 1976; 4: 305– 313. 50 Gandolfi AJ, White RD, Sipes IG, et al. Bioactivation and covalent binding of halothane in vitro: studies with (3H)-and (14C)halothane. J Pharmacol Exp Ther 1980; 214: 721– 725. 51 Legler D, Van Dyke RA. Microsomal lipids as targets for halothane metabolites. Res Commun Chem Pathol Pharmacol 1982; 37: 395– 402. 52 Trudell JR, Bösterling B, Trevor AJ. Reductive metabolism of halothane by human and rabbit cytochrome P-450. Binding of 1-chloro-2,2,2-trifluoroethyl radical to phospholipids. Molec Pharmacol 1982; 21: 710– 717. 53 De Groot H, Harnisch U, Noll T. Suicidal inactivation of microsomal cytochrome P-450 by halothane under hypoxic conditions. Biochem Biophys Res Commun 1982; 107: 885– 891. 54 Smuckler EA. Structural and functional changes in acute liver injury. Environ Health Perspect 1976; 15: 13– 25. 55 Recknagel RO, Glende EA Jr, Hruszkewycz AM. Chemical mechanisms in carbon tetrachloride toxicity. In: WA Pryor, ed. Free radicals in biology, Vol III. London: Academic Press, 1977: 97– 132. 56 TF Slater (Editor). Biochemical mechanisms of liver injury. London: Academic Press, 1978. 57 De Groot H, Haas W. O2-independent damage of cytochrome P-450 by CCL4-metabolites in hepatic microsomes. FEBS Lett 1980; 115: 253– 256. 58 De Groot H, Haas W. Self-catalysed, O2 independent inactivation of NADPH- or dithionite-reduced microsomal cytochrome P-450 by carbon tetrachloride. Biochem Pharmacol 1981; 30: 2343– 2347. 59 Pryor WA, Stanley JP, Blair E. Autoxidation of polyunsaturated fatty acids. II. A suggested mechanism for the formation of TBA-reactive materials from prostaglandin-like endoperoxides. Lipids 1976; 11: 370– 379. 60 Benedetti A, Comporti M, Esterbauer H. Identification of 4-hy-droxynonenal as a cytotoxic product originating from the peroxidation of liver microsomal lipids. Biochim Biophys Acta 1980; 620: 281– 296. 61 Tappel AL. Measurement of and protection from in vivo lipid peroxidation. In: WA Pryor, ed. Free radicals in biology, Vol IV. London: Academic Press, 1980: 1– 47. 62 Trudell JR, Bosterling B, Trevor AJ. Reductive metabolism of carbon tetrachloride by human cytochromes P-450 reconstituted in phospholipid vesicles: mass spectral identification of trichloro-methyl radical bound to dioleoyl phosphatidylcholine. Proc Natl Acad Sci USA 1982; 79: 2678– 2682. 63 Brown BR JR. Hepatic microsomal lipoperoxidation and inhalation anesthetics: a biochemical and morphologic study in the rat. Anesthesiology 1973; 36: 458– 465. 64 Reiner O, Athanassopoulos S, Hellmer KH, et al. Bildung von Chloroform aus Tetrachlorkohlenstoff in Lebermikrosomen, Lip-idperoxidation und Zerstorung von Cytochrom P-450. Arch Toxicol 1972; 29: 219– 233. 65 Lumper L, Plock HJ, Staudinger H. Untersuchungen zur Abhan-gigkeit der Lipidperoxidation in Rattenlebermikrosomen vom Sauerstoffpartialdruck. Hoppe Seylers Z Physiol Chem 1968; 349: 1185– 1190. 66 Lowrey K, Glende EA Jr, Recknagel RO. Destruction of liver microsomal calcium pump activity by carbon tetrachloride and bromotrichloromethane. Biochem Pharmacol 1981; 30: 135– 140. 67 Cascorbi HF, Blake DA, Helrich M. Differences in the biotransformation of halothane in man. Anesthesiology 1971; 32: 119– 123. 68 Ross WT, Cardell RR. Proliferation of smooth endoplasmic reticulum and induction of microsomal drug-metabolizing enzymes after ether or halothane. Anesthesiology 1978; 48: 325– 331. 69 Nimmo WS, Thompson PG, Prescott LF. Microsomal enzyme induction after halothane anaesthesia. Br J Clin Pharmacol 1981; 12: 433– 434. 70 Duvaldestin P, Mazze RI, Nivoche Y, et al. Occupational exposure to halothane results in enzyme induction in anesthetists. Anesthesiology 1981; 54: 57– 60. 71 Kessler M. Normal and critical O2-supply of the liver. In: DW Lubbers, UC Luft, G Thews, et al. eds. Oxygen transport in blood and tissue. Stuttgart: Georg Thieme Verlag, 1968: 242– 251. Citing Literature Volume3, Issue41983Pages 601-606 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX