Artigo Revisado por pares

Mechanical and physical properties of Bi-2223 and Nb 3 Sn superconducting materials between 300 K and 7 K

2003; IOP Publishing; Volume: 16; Issue: 9 Linguagem: Inglês

10.1088/0953-2048/16/9/313

ISSN

1361-6668

Autores

A. Nyilas, Kōzō Osamura, M. Sugano,

Tópico(s)

Superconductivity in MgB2 and Alloys

Resumo

Within the framework of IEC/TC90-WG5 and VAMAS/TWA16, superconducting (SC) materials are investigated with respect to their mechanical properties between 300 K and 7 K. Besides the mechanical tests, physical and electrical properties are also determined for high Tc SC-tapes. The mechanical tests comprised the characterization of tensile properties at ambient temperature as well as at 7 K of Nb3Sn-reacted strands, Bi2223 tapes, pure silver tapes, silver bars, silver alloy tapes and bare filaments extracted from Bi-2223 tapes. All these investigations are carried out using a variable temperature helium gas flow cryostat equipped with a servo hydraulic tensile machine (MTS, model 810). For the load measurements specially developed, highly sensitive cryogenic proof in situ working load cells are used. For the strain determination of the wires, a high resolution ultra-light double extensometer system with a specially developed low noise signal conditioner is used. The engineering parameters such as yield strength and elastic modulus are evaluated using the obtained data with newly developed software. For the tiny and brittle filaments load versus displacement data are obtained. A determined master line (Young's modulus versus machine compliance) established by thin 0.125 mm Ø wires of different pure metals is used for the Young's modulus estimation of filaments. For the 4 K electrical voltage–current measurements under magnetic fields of up to 13 T, an existing test facility is used for the high Tc tapes. No dependency between applied strain up to 0.3% and the critical current under magnetic field could be observed for the selected specific Bi-2223 tapes. In addition, thermal expansion curves of Bi-2223 tapes along with pure silver and silver alloy (AgMg) are determined between 290 K and 7 K using in situ working extensometers. The coefficient of thermal expansion is evaluated by the determined thermal expansion versus temperature curve.

Referência(s)