Revisão Acesso aberto Revisado por pares

Influence of Drugs on Thyroid Function in Dogs

2003; Wiley; Volume: 17; Issue: 4 Linguagem: Inglês

10.1111/j.1939-1676.2003.tb02467.x

ISSN

1939-1676

Autores

Sylvie Daminet, Duncan C. Ferguson,

Tópico(s)

Growth Hormone and Insulin-like Growth Factors

Resumo

Journal of Veterinary Internal MedicineVolume 17, Issue 4 p. 463-472 Open Access Influence of Drugs on Thyroid Function in Dogs Sylvie Daminet, Sylvie Daminet Department of Small Animal Medicine, Ghent University, Belgium DMV, MSc, DACVIM, DECVIM-ca, Department of Small Animal Medicine, Ghent University, Salisbury-laan 133, B-9820 Merelbeke, Belgium; E-mail: sylvie.daminet@rug. ac.beSearch for more papers by this authorDuncan C. Ferguson, Duncan C. Ferguson Department of Physiology and Pharmacology, The University of Georgia College of Veterinary Medicine, Athens, GASearch for more papers by this author Sylvie Daminet, Sylvie Daminet Department of Small Animal Medicine, Ghent University, Belgium DMV, MSc, DACVIM, DECVIM-ca, Department of Small Animal Medicine, Ghent University, Salisbury-laan 133, B-9820 Merelbeke, Belgium; E-mail: sylvie.daminet@rug. ac.beSearch for more papers by this authorDuncan C. Ferguson, Duncan C. Ferguson Department of Physiology and Pharmacology, The University of Georgia College of Veterinary Medicine, Athens, GASearch for more papers by this author First published: 28 June 2008 https://doi.org/10.1111/j.1939-1676.2003.tb02467.xCitations: 97 AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Several drugs can affect thyroid function test results in humans and eventually lead to an erroneous evaluation of thyroid function. These medications can alter the synthesis, secretion, transport, or metabolism of thyroid hormones. Some drugs also directly inhibit the hypothalamic-pituitary-thyroid axis. The effects of drugs on thyroid function in dogs have long been underestimated and have most likely contributed to the overdiagnosis of hypothyroidism in this species. This manuscript 1st reviews pertinent thyroid physiology followed by an overview of drugs for which the effects on canine thyroid function have been studied. The effects of glucocorticoids, propranolol, sulfonamides, phenobarbital, potassium bromide, and nonsteroidal anti-inflammatory agents (NSAIDs) on canine thyroid function are summarized here. Knowledge of the potential effect of these medications on thyroid function should contribute to a more reliable interpretation of thyroid function test results in dogs. References 1 Peterson ME, Melián C., Nichols R. Measurement of serum total thyroxine, triiodothyronine, free thyroxine, and thyrotropin concentrations for diagnosis of hypothyroidism in dogs. J Am Vet Med Assoc 1997; 211: 1396–1402. 10.2460/javma.1997.211.11.1396 CASPubMedWeb of Science®Google Scholar 2 Dixon RM, Mooney CT. Evaluation of serum free thyroxine and thyrotropin concentrations in the diagnosis of canine hypothyroidism. J Small Anim Pract 1999; 40: 72–78. 10.1111/j.1748-5827.1999.tb03040.x CASPubMedWeb of Science®Google Scholar 3 Scott-Moncrieff JC, Nelson RW, Bruner JM, et al. Comparison of serum concentrations of thyroid-stimulating hormone in healthy dogs, hypothyroid dogs, and euthyroid dogs with concurrent disease. J Am Vet Med Assoc 1998; 212: 387–391. CASPubMedWeb of Science®Google Scholar 4 Surks MI, Stievert R. Drugs and thyroid function. New Engl J Med 1995; 333: 1688–1694. 10.1056/NEJM199512213332507 CASPubMedWeb of Science®Google Scholar 5 Davies PH, Franklyn JA. The effects of drugs on tests of thyroid function. Eur J Clin Pharmacol 1991; 40: 439–451. 10.1007/BF00315221 CASPubMedWeb of Science®Google Scholar 6 Ferguson DC. The dog as a model of thyroid physiology. Proceedings of the 16th Annual American College of Veterinary Internal Medicine Forum, San Diego, CA, 1998. Google Scholar 7 Kaptein EM, Hays MT, Ferguson DC. Thyroid hormone metabolism: A comparative evaluation. Vet Clin North Am Small Anim Pract 1994; 24: 431–463. 10.1016/S0195-5616(94)50051-2 CASPubMedWeb of Science®Google Scholar 8 Capen CC. Mechanism of chemical injury of thyroid gland. Prog Clin Biol Res 1994; 387: 173–191. PubMedWeb of Science®Google Scholar 9 Ferguson DC. Thyroid hormones and antithyroid drugs. In: HR Adams, ed. Veterinary Pharmacology and Therapeutics. Ames , IA : Iowa State Press; 2001: 626–648. Google Scholar 10 Taurog A. Hormone synthesis. In: LE Braverman, RD Utiger, eds. Werner and Ingbar's The Thyroid. Philadelphia , PA : Lippincott-Raven; 1996: 47–81. Google Scholar 11 Castillo VA, Lalia JC, Junco M., et al. Changes in thyroid function in puppies fed a high iodine commercial diet. Vet J 2001; 161: 80–84. 10.1053/tvjl.2000.0523 CASPubMedWeb of Science®Google Scholar 12 Wolff J. Excess iodide inhibits the thyroid gland by multiple mechanisms. In: R. Eckholm, LD Kohn, SH Wollman, eds. Control of the Thyroid Gland. New York , NY : Plenum; 1989: 211–244. 10.1007/978-1-4757-2058-7_8 Web of Science®Google Scholar 13 Kaptein EM, Hoopes MT, Ferguson DC, et al. Comparison of reverse triiodothyronine distribution and metabolism in normal dogs and humans. Endocrinology 1990; 126: 2003–2014. 10.1210/endo-126-4-2003 CASPubMedWeb of Science®Google Scholar 14 Kaptein EM, Moore GE, Ferguson DC, et al. Thyroxine and triiodothyronine distribution and metabolism in thyroxine-replaced athyreotic dogs and normal humans. Am J Phys (Endocrinol Metab) 1993; 264: E90–E100. CASPubMedWeb of Science®Google Scholar 15 Broome MR, Hays MT, Turrel JM. Peripheral metabolism of thyroid hormones and iodide in healthy and hyperthyroid cats. Am J Vet Res 1987; 48: 1286–1289. CASPubMedWeb of Science®Google Scholar 16 Yang X., McGraw RA, Su XS, et al. Canine thyrotropin-subunit gene: Cloning and expression in Escherichia coli, generation of monoclonal antibodies, and transient expression in the Chinese Hamster ovary cells. Domest Anim Endocrinol 2000; 18: 363–378. 10.1016/S0739-7240(00)00056-4 CASPubMedWeb of Science®Google Scholar 17 Larsen PR, Silva JE, Kaplan MM. Relationships between circulating and intracellular thyroid hormones: Physiological and clinical implications. Endocr Rev 1981; 2: 87–102. 10.1210/edrv-2-1-87 CASPubMedWeb of Science®Google Scholar 18 Reichlin S. Neuroendocrine control of thyrotropin secretion. In: SH Ingbar, LE Braverman, eds. The Thyroid. Philadelphia , PA : Lip-pincott; 1986: 241–266. Google Scholar 19 Magner JA. Thyroid-stimulating hormone: Biosynthesis, cell biology, and bioactivity. Endocr Rev 1990; 11: 354–385. 10.1210/edrv-11-2-354 CASPubMedWeb of Science®Google Scholar 20 Fish LH, Schwartz HL, Cavanagh J., et al. Replacement dose, metabolism, and bioavailability of levothyroxine in the treatment of hypothyroidism: Role of triiodothyronine in pituitary feedback in humans. N Engl J Med 1997; 316: 764–770. 10.1056/NEJM198703263161302 PubMedWeb of Science®Google Scholar 21 Belshaw BE, Barandes M., Becker DV, et al. A model of iodine kinetics in the dog. Endocrinology 1974; 95: 1078–1093. 10.1210/endo-95-4-1078 CASPubMedWeb of Science®Google Scholar 22 Inada M., Kasagi K., Kurata S., et al. Estimation of thyroxine and triiodothyronine distribution and of the conversion rate of thyrox-ine to triiodothyronine in man. J Clin Invest 1975; 55: 1337–1348. 10.1172/JCI108053 CASPubMedWeb of Science®Google Scholar 23 Laurberg P. Iodothyronine release from the perfused canine thyroid. Acta Endocrinol (Copenh) 1980; 236: 1–50. CASPubMedGoogle Scholar 24 Ferguson DC. Thyroid function tests in the dog. Vet Clin North Am Small Anim Pract 1984; 14: 783–808. 10.1016/S0195-5616(84)50081-3 CASPubMedWeb of Science®Google Scholar 25 Bigler B. Thyroxine-binding serum proteins in the cat as compared to dog and man. Schweiz Arch Tierheilkd 1976; 118: 559–562. CASPubMedGoogle Scholar 26 Larsson M., Pettersson T., Carlstrom A. Thyroid hormone binding in serum of 15 vertebrate species: Isolation of thyroxine-binding globulin and prealbumin analogs. Gen Comp Endocrinol 1985; 58: 360–375. 10.1016/0016-6480(85)90108-X CASPubMedWeb of Science®Google Scholar 27 Larsson M. Diagnostic Methods in Canine Hypothyroidism and Influence of Non-THYROIDAL Illness on Thyroid Hormones and Thyroxine-Binding Proteins. Uppsala , Sweden : Uppsala University; 1987. Google Scholar 28 Mendel CM. The free hormone hypothesis: A physiologically based mathematical model. Endocr Rev 1989; 10: 232–274. 10.1210/edrv-10-3-232 CASPubMedWeb of Science®Google Scholar 29 Robbins JR, Rall JE. Proteins associated with the thyroid hormones. Physiol Rev 1960; 40: 415–489. 10.1152/physrev.1960.40.3.415 CASPubMedWeb of Science®Google Scholar 30 Ferguson DC, Peterson ME. Serum free and total iodothyronine concentrations in dogs with hyperadrenocorticism. Am J Vet Res 1992; 53: 1636–1640. CASPubMedWeb of Science®Google Scholar 31 Pardridge WM. Transport of protein-bound hormones into tissues in vivo. Endocr Rev 1981; 2: 103–123. 10.1210/edrv-2-1-103 CASPubMedWeb of Science®Google Scholar 32 Burrow GN, Oppenheimer JH, Volpe R. Thyroid function and disease. Philadelphia , PA : WB Saunders; 1989. Google Scholar 33 Fox LE, Nachreiner RF. The pharmacokinetics of T3 and T4 in the dog. Proc 62nd Conf Res Workers in Anim Dis 1981; 13. Google Scholar 34 Nachreiner RF, Refsal KR, Ravis WR, et al. Pharmacokinetics of L-thyroxine after its oral administration in dogs. Am J Vet Res 1993; 54: 2091–2098. CASPubMedWeb of Science®Google Scholar 35 Scott-Moncrieff CR, Guptill-Yoran L. Hypothyroidism. In: SJ Ettinger, EC Feldman, eds. Textbook of Veterinary Internal Medicine. Philadelphia , PA : WB Saunders; 2000: 1419–1429. Google Scholar 36 Gosselin SJ, Capen CC, Martin SL. Histologic and ultrastruc-tural evaluation of thyroid lesions associated with hypothyroidism in dogs. Vet Pathol 1981; 18: 299–309. 10.1177/030098588101800302 CASPubMedWeb of Science®Google Scholar 37 Rijnberk A. Thyroids. In: Clinical Endocrinology of Dogs and Cats. Dordrecht , The Netherlands : Kluwer Academic Publishers; 1996: 35–59. 10.1007/978-94-009-0105-6_3 Google Scholar 38 Campbell KL, Chambers MD, Davis CA, et al. Effects of trimethoprim/sulfamethoxazole on thyroid physiology in dogs. Proceedings of the 11th Annual American Association of Veterinary Dermatology/American College of Veterinary Dermatology Meeting, Santa Fe, NM, 1995. Google Scholar 39 Scott-Moncrieff JCR, Nelson RW. Change in serum thyroid-stimulating hormone concentration in response to administration of thyrotropin-releasing hormone to healthy dogs; hypothyroid dogs; and dogs with concurrent disease. J Am Vet Med Assoc 1998; 213: 1435–1438. CASPubMedWeb of Science®Google Scholar 40 Kaptein EM, Moore GE, Ferguson DC, et al. Effects of prednisone on thyroxine and 3;5;3-triiodothyronine metabolism in normal dogs. Endocrinology 1992; 130: 1669–1679. 10.1210/en.130.3.1669 CASPubMedWeb of Science®Google Scholar 41 Wenzel KW. Disturbances of thyroid function tests by drugs. Acta Med Austriaca 1996; 23: 57–60. PubMedWeb of Science®Google Scholar 42 Cavalieri RR. The effects of nonthyroid disease and drugs on thyroid function tests. Med Clin North Am 1991; 75: 27–39. 10.1016/S0025-7125(16)30470-9 CASPubMedWeb of Science®Google Scholar 43 Rubello D., Sonino N., Casara D., et al. Acute and chronic effects of high glucocorticoid levels on hypothalamic-pituitary-thyroid axis in man. J Endocrinol Invest 1992; 15: 437–441. 10.1007/BF03348767 CASPubMedWeb of Science®Google Scholar 44 Samuels MH, Luther M., Henry P., et al. Effects of hydrocortisone on pulsatile pituitary glycoprotein secretion. J Clin Endocrinol Metab 1994; 78: 211–215. 10.1210/jc.78.1.211 CASPubMedWeb of Science®Google Scholar 45 Hangaard J., Andersen M., Grodum E., et al. Pulsatile thyrotropin secretion in patients with Addison's disease during variable glucocorticoid therapy. J Clin Endocrinol Metab 1996; 81: 2502–2507. 10.1210/jc.81.7.2502 CASPubMedWeb of Science®Google Scholar 46 Moore GE, Ferguson DC, Hoenig M. Effects of oral administration of antiinflammatory doses of prednisone on thyroid hormone response to thyrotropin-releasing hormone and thyrotropin in clinically normal dogs. Am J Vet Res 1993; 54: 130–135. CASPubMedWeb of Science®Google Scholar 47 Peterson ME, Ferguson DC, Kintzer PP, et al. Effects of spontaneous hyperadrenocorticism on serum thyroid hormone concentrations in the dog. Am J Vet Res 1984; 45: 2034–2038. CASPubMedWeb of Science®Google Scholar 48 Torres S., McKeever PJ, Johnston SD. Effects of oral administration of prednisolone on thyroid function in dogs. Am J Vet Res 1991; 52: 416–421. CASPubMedWeb of Science®Google Scholar 49 Daminet S., Paradis M., Refsal KR, et al. Short term influence of prednisone and phenobarbital on thyroid function in euthyroid dogs. Can Vet J 1999; 40: 411–415. CASPubMedWeb of Science®Google Scholar 50 Graham PA, Refsal KR, Nachreiner RF. Oral prednisone did not suppress serum thyrotropin in radiothyroidectomized Beagles. Proceedings of the 16th Annual Veterinary Medical Forum of the American College of Veterinary Internal Medicine, San Diego, CA, 1998. Google Scholar 51 McClain M., Levin AA, Posch R., et al. The effect of pheno-barbital on the metabolism and excretion of thyroxine in rats. Toxicol Appl Pharmacol 1989; 99: 216–228. 10.1016/0041-008X(89)90004-5 CASPubMedWeb of Science®Google Scholar 52 Curran PG, Degroot LJ. The effect of hepatic enzyme–inducing drugs on thyroid hormones and the thyroid gland. Endocr Rev 1991; 12: 135–150. 10.1210/edrv-12-2-135 CASPubMedWeb of Science®Google Scholar 53 Johnson S., McKillop D., Miller J., et al. The effects on rat thyroid function of an hepatic microsomal enzyme inducer. Hum Exp Toxicol 1993; 12: 153–158. 10.1177/096032719301200210 CASPubMedWeb of Science®Google Scholar 54 Barter RA, Klaassen CD. Reduction of thyroid hormone levels and alteration on thyroid function by four representative UDP-glucu-ronosyltransferase inducers in rats. Toxicol Appl Pharmacol 1994; 128: 9–17. 10.1006/taap.1994.1174 CASPubMedWeb of Science®Google Scholar 55 Gieger TL, Hosgood G., Taboada J., et al. Thyroid function and serum hepatic enzyme activity in dogs after phenobarbital administration. J Vet Int Med 2000; 14: 277–281. 10.1892/0891-6640(2000)014 2.3.CO;2 CASPubMedWeb of Science®Google Scholar 56 Theodoropoulos TJ, Zolman JC. Effects of phenobarbital on hypothalamic-pituitary-thyroid axis in the rat. Am J Med Sci 1989; 297: 224–227. 10.1097/00000441-198904000-00005 CASPubMedWeb of Science®Google Scholar 57 Liu J., Liu Y., Barter RA, et al. Alteration of thyroid homeostasis by UDP-glucuronosyltransferase inducers in rats: A dose-response study. J Pharmacol Exp Ther 1995; 273: 977–985. CASPubMedWeb of Science®Google Scholar 58 DeSandro V., Chevrier M., Boddaert A., et al. Comparison of the effects of propylthiouracil, amiodarone, diphenylhydantoin, phenobar-bital, and 3-methylcholanthrene on hepatic and renal T4 metabolism and thyroid gland function in rats. Toxicol Appl Pharmacol 1991; 111: 263–278. 10.1016/0041-008X(91)90030-I CASPubMedWeb of Science®Google Scholar 59 Attia MA, Aref H. Hepatic microsomal enzyme induction and thyroid function in rats treated with high doses of phenobarbital or chlorpromazine. DTW Dtsch Tierarztl Wochenschr 1991; 98: 205–244. Google Scholar 60 Ohnhaus EE, Bürgi H., Burger A., et al. The effects of antipy-rine; phenobarbitol and rifampicin on thyroid hormone metabolism in man. Eur J Clin Invest 1981; 11: 381–387. 10.1111/j.1365-2362.1981.tb02000.x CASPubMedWeb of Science®Google Scholar 61 Deda G., Akinci A., Teziç, et al. Effects of anticonvulsivant drugs on thyroid hormones in epileptic children. Turk J Pediatr 1992; 34: 239–244. CASPubMedWeb of Science®Google Scholar 62 Verma NP, Haidukewych D. Differential but infrequent alterations of hepatic enzyme levels and thyroid hormone levels by anti-convulsivant drugs. Arch Neurol 1994; 51: 381–384. 10.1001/archneur.1994.00540160079010 PubMedWeb of Science®Google Scholar 63 Kantrowitz LB, Peterson ME, Trepanier LA, et al. Serum total thyroxine, total triiodothyronine, free thyroxine, and thyrotropin concentrations in epileptic dogs treated with anticonvulsants. J Am Vet Med Assoc 1999; 214: 1804–1808. CASPubMedWeb of Science®Google Scholar 64 Gaskill CL, Burton SA, Gelens HC, et al. Effects of phenobar-bital treatment on serum thyroxine and thyroid-stimulating hormone concentrations in epileptic dogs. J Am Vet Med Assoc 1999; 215: 489–496. CASPubMedWeb of Science®Google Scholar 65 Müller PB, Wolfsheimer KJ, Tabaoda J., et al. Effects of long-term phenobarbital treatment on the thyroid and adrenal axis and adrenal function tests in dogs. J Vet Intern Med 2000; 14: 157–164. 10.1111/j.1939-1676.2000.tb02230.x CASPubMedWeb of Science®Google Scholar 66 Ferguson DC. Thyroid hormone replacement therapy. In: RW Kirk, ed. Current Veterinary Therapy IX. Philadelphia , PA : WB Saun-ders; 1986: 1018–1025. Google Scholar 67 Chrisman CL. Seizures. In: CL Chrisman, ed. Problems in Small Animal Neurology. Philadelphia , PA : Lea and Febiger; 1991: 191–203. Google Scholar 68 Jaggy A., Oliver JE, Ferguson DC, et al. Neurological manifestations of hypothyroidism: A retrospective study of 29 dogs. J Vet Intern Med 1994; 8: 328–336. 10.1111/j.1939-1676.1994.tb03245.x CASPubMedWeb of Science®Google Scholar 69 Jaggy A., Oliver JE. Neurologic manifestations of thyroid disease. Vet Clin North Am Small Anim Pract 1994; 24: 487–494. 10.1016/S0195-5616(94)50054-8 CASPubMedWeb of Science®Google Scholar 70 DeLong RG. The neuromuscular system and brain in hypothy-roidism. In: LE Braverman, RD Utiger, eds. Werner and Ingbar's The Thyroid. Philadelphia , PA : Lippincott-Raven; 1996: 826–835. Google Scholar 71 Velicky J., Titlbach M., Lojda Z., et al. Long-term action of potassium bromide on the rat thyroid gland. Acta Histochem 1998; 100: 11–23. 10.1016/S0065-1281(98)80003-2 CASPubMedWeb of Science®Google Scholar 72 Loeber JG, Franken MAM, Van Leeuwen FXR. Effect of sodium bromide on endocrine parameters in the rat as studied by im-munocytochemistry and radioimmunoassay. Food Chem Toxicol 1983; 21: 391–404. 10.1016/0278-6915(83)90093-5 CASPubMedWeb of Science®Google Scholar 73 van Leeuwen FXR, den Tonkelaar EM, Van Logten MJ. Tox-icity of sodium bromide in rats: Effects on endocrine system and reproduction. Food Chem Toxicol 1983; 21: 383–389. 10.1016/0278-6915(83)90092-3 PubMedWeb of Science®Google Scholar 74 Velicky J., Titlbach M., Duskova J., et al. Potassium bromide and the thyroid gland of the rat: Morphology and immunohistochemistry, RIA and INAA analysis. Ann Anat 1997; 179: 421–431. 10.1016/S0940-9602(97)80041-6 CASPubMedWeb of Science®Google Scholar 75 Sangster B., Blom JL, Sekhuis VM. The influence of sodium bromide in man: A study in human volunteers with special emphasis on the endocrine and the central nervous system. Food Chem Toxicol 1983; 21: 409–419. 10.1016/0278-6915(83)90095-9 CASPubMedWeb of Science®Google Scholar 76 Mizukami Y., Funaki N., Hashimoto T. Histologic features of thyroid gland in a patient with bromide-induced hypothyroidism. Am J Clin Pathol 1988; 89: 802–805. 10.1093/ajcp/89.6.802 CASPubMedWeb of Science®Google Scholar 77 Paull LC, Scott-Moncrieff JC, DeNicola DB, et al. Effect of potassium bromide (KBr) at anticonvulsant dosages on thyroid function and morphology in dogs. Proceedings of the 18th Annual Veterinary Medicine Forum of the American College of Veterinary Internal Medicine, Seattle, WA, 2000. Google Scholar 78 Doerge DR, Decker CJ. Inhibition of peroxidase-catalyzed reactions by arylamines: Mechanism for the anti-thyroid action of sul-famethazine. Chem Res Toxicol 1994; 7: 164–169. 10.1021/tx00038a008 CASPubMedWeb of Science®Google Scholar 79 Comby F., Lagorce JF, Moulard T., et al. Antibacterial sulfon-amides, antiparasitic and antifungal derivates of imidazole: Evaluation of their antithyroid effects in rats. Vet Res 1993; 24: 316–326. CASPubMedWeb of Science®Google Scholar 80 Cohen HN, Fyffe JA, Ratcliffe WA, et al. Effects of trimetho-prim and sulfonamide preparations on the pituitary-thyroid axis of rodents. J Endocrinol 1981; 91: 299–303. 10.1677/joe.0.0910299 CASPubMedWeb of Science®Google Scholar 81 Cohen HN, Beastall GH, Ratcliffe WA, et al. Effects on human thyroid function of sulfonamide and trimethoprim combination drugs. Br Med J 1980; 81: 646–647. 10.1136/bmj.281.6241.646 CASGoogle Scholar 82 Lagler F., Kretzschmar R., Leuschner F., et al. Toxikologische untersucchungen der Kombination Sulfamoxoll/Trimethoprim (CN 3123 eines neuen Briet-Brandchemotherapeutikums. Arzneimmittel-forsch 1976; 26: 634–643. CASPubMedWeb of Science®Google Scholar 83 Panciera DL, Post K. Effect of oral administration of sulfadia-zine and trimethoprim in combination on thyroid function in dogs. Can J Vet Res 1992; 56: 349–352. CASPubMedWeb of Science®Google Scholar 84 Post K., Panciera DL, Clark EG. Lack of effect of trimethoprim and sulfadiazine in combination in mid- to late gestation on thyroid function in neonatal dogs. J Reprod Fertil 1993; 47: 477–482. CASPubMedWeb of Science®Google Scholar 85 Hall IA, Campbell KL, Chambers MD, et al. Effect of trimeth-oprim/sulfamethoxazole on thyroid function in dogs with pyoderma. J Am Vet Med Assoc 1993; 202: 1959–1962. CASPubMedWeb of Science®Google Scholar 86 Campbell KL, Nachreiner R., Schaeffer DJ, et al. Effects of trimethoprim/sulfamethoxazole on endogenous thyroid stimulating hormone concentration in dogs. 3rd World Congress of Veterinary Dermatology, Edinburgh, Scotland, UK, September 1996. Google Scholar 87 Gookin JL, Trepanier LA, Bunch SE. Clinical hypothyroidism associated with trimethoprim-sulfadiazine administration in a dog. J Am Vet Med Assoc 1999; 214: 1028–1031. CASPubMedWeb of Science®Google Scholar 88 Torres S., McKeever P., Johnston S. Hypothyroidism in a dog associated with trimethoprim-sulfadiazine therapy. Vet Dermatol 1996; 7: 105–108. 10.1111/j.1365-3164.1996.tb00234.x Web of Science®Google Scholar 89 Bishnoi A., Carlson HE, Gruber BL, et al. Effects of commonly prescribed nonsteroidal anti-inflammatory drugs on thyroid hormone measurements. Am J Med 1994; 96: 235–238. 10.1016/0002-9343(94)90148-1 CASPubMedWeb of Science®Google Scholar 90 McConnell RJ. Changes in thyroid function tests during short-term salsalate use. Metabolism 1999; 48: 501–503. 10.1016/S0026-0495(99)90111-7 CASPubMedWeb of Science®Google Scholar 91 Larsen PR. Salicylate-induced increases in free triiodothyronine in human serum: Evidence of inhibition of triiodothyronine binding to thyroxine-binding globulin and thyroxine-binding prealbumin. J Clin Invest 1972; 51: 1125–1134. 10.1172/JCI106905 CASPubMedWeb of Science®Google Scholar 92 McConnell RJ. Abnormal thyroid function test results in patients taking salsalate. J Am Med Assoc 1992; 267: 1242–1243. 10.1001/jama.267.9.1242 CASPubMedWeb of Science®Google Scholar 93 Chalmers DK, Scholz GH, Topliss DJ, et al. Thyroid hormone uptake by hepatocytes: Structure-activity relationships of phenylan-thranilic acids with inhibitory activity. J Med Chem 1993; 36: 1272–1277. 10.1021/jm00061a019 CASPubMedWeb of Science®Google Scholar 94 Barlow JW, Raggatt LE, Scholz GH, et al. Preferential inhibition of cytoplasmic T3 binding is associated with reduced nuclear binding in cultured cells. Thyroid 1996; 6: 47–51. 10.1089/thy.1996.6.47 CASPubMedWeb of Science®Google Scholar 95 Lim CF, Loidl NM, Kennedy JA, et al. Drug effects on triio-dothyronine uptake by rat anterior pituitary cells in vitro. Exp Clin Endocrinol Diabetes 1996; 104: 151–157. 10.1055/s-0029-1211437 CASPubMedWeb of Science®Google Scholar 96 Carlson HE, Kael AT, Schulman PE, et al. Effects of several nonsteroidal anti-inflammatory drugs on thyroid function tests. J Rheu-matol 1999; 26: 1855–1856. CASPubMedWeb of Science®Google Scholar 97 Wang R., Nelson JC, Wilcox B. Salsalate and salicylate binding to and their displacement of thyroxine from thyroxine-binding globulin, transthyretin, and albumin. Thyroid 1999; 9: 359–364. 10.1089/thy.1999.9.359 CASPubMedWeb of Science®Google Scholar 98 Ferguson DC. Influence of common drugs on the free thyroxine fraction in canine serum. Proceedings of the 7th Annual Veterinary Medicine Forum of the American College of Veterinary Internal Medicine, 1989. Google Scholar 99 Isaacs JP. Carprofen-pharm profile. Comp Cont Educ 1999; 3: 246–248. Google Scholar 100 Ferguson DC, Moore GE, Hoenig M. Carprofen lowers total T4 and TSH; but not free T4 concentrations in dogs. Proceedings of the 17th Annual Veterinary Medicine Forum of the American College of Veterinary Internal Medicine, Chicago, IL, 1999. Google Scholar 101 Center SA, Mitchell J., Nachreiner RF, et al. Effects of pro-pranolol on thyroid function in dogs. Am J Vet Res 1984; 45: 109–111. CASPubMedWeb of Science®Google Scholar Citing Literature Volume17, Issue4July 2003Pages 463-472 ReferencesRelatedInformation

Referência(s)