Directional Selection and Clutch Size in Birds
1990; University of Chicago Press; Volume: 136; Issue: 2 Linguagem: Inglês
10.1086/285095
ISSN1537-5323
AutoresFred Cooke, Peter Taylor, Charles M. Francis, Robert F. Rockwell,
Tópico(s)Animal Ecology and Behavior Studies
ResumoPrevious articleNext article No AccessNotes and CommentsDirectional Selection and Clutch Size in BirdsFred Cooke, Peter D. Taylor, Charles M. Francis, and Robert F. RockwellFred Cooke Search for more articles by this author , Peter D. Taylor Search for more articles by this author , Charles M. Francis Search for more articles by this author , and Robert F. Rockwell Search for more articles by this author PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by The American Naturalist Volume 136, Number 2Aug., 1990 Published for The American Society of Naturalists Article DOIhttps://doi.org/10.1086/285095 Views: 34Total views on this site Citations: 41Citations are reported from Crossref Copyright 1990 The University of ChicagoPDF download Crossref reports the following articles citing this article:Malin Olofsson, Anna-Karin Almén, Kim Jaatinen, Matias Scheinin Temporal escape–adaptation to eutrophication by Skeletonema marinoi, FEMS Microbiology Letters 369, no.11 (Feb 2022).https://doi.org/10.1093/femsle/fnac011Hanna Kokko The stagnation paradox: the ever-improving but (more or less) stationary population fitness, Proceedings of the Royal Society B: Biological Sciences 288, no.19631963 (Nov 2021).https://doi.org/10.1098/rspb.2021.2145Tomos Potter, Ronald D. Bassar, Paul Bentzen, Emily W. Ruell, Julián Torres-Dowdall, Corey A. Handelsman, Cameron K. Ghalambor, Joseph Travis, David N. Reznick, and Tim Coulson Environmental Change, If Unaccounted, Prevents Detection of Cryptic Evolution in a Wild Population, The American Naturalist 197, no.11 (Nov 2020): 29–46.https://doi.org/10.1086/711874David N. Fisher, Andrew G. McAdam Indirect genetic effects clarify how traits can evolve even when fitness does not, Evolution Letters 3, no.11 (Jan 2019): 4–14.https://doi.org/10.1002/evl3.98Matthew Schrader, Benjamin J. M. Jarrett, Darren Rebar, Rebecca M. Kilner Adaptation to a novel family environment involves both apparent and cryptic phenotypic changes, Proceedings of the Royal Society B: Biological Sciences 284, no.18621862 (Sep 2017): 20171295.https://doi.org/10.1098/rspb.2017.1295F. Stephen Dobson, Peter H. Becker, Coline M. Arnaud, Sandra Bouwhuis, Anne Charmantier Plasticity results in delayed breeding in a long-distant migrant seabird, Ecology and Evolution 7, no.99 (Mar 2017): 3100–3109.https://doi.org/10.1002/ece3.2777Timothée Bonnet, Peter Wandeler, Glauco Camenisch, Erik Postma, Russell Bonduriansky Bigger Is Fitter? Quantitative Genetic Decomposition of Selection Reveals an Adaptive Evolutionary Decline of Body Mass in a Wild Rodent Population, PLOS Biology 15, no.11 (Jan 2017): e1002592.https://doi.org/10.1371/journal.pbio.1002592Njal Rollinson, Locke Rowe Persistent directional selection on body size and a resolution to the paradox of stasis, Evolution 69, no.99 (Sep 2015): 2441–2451.https://doi.org/10.1111/evo.12753A J Wilson Competition as a source of constraint on life history evolution in natural populations, Heredity 112, no.11 (Feb 2013): 70–78.https://doi.org/10.1038/hdy.2013.7François Blanquart, Sylvain Gandon, Colleen Webb Time-shift experiments and patterns of adaptation across time and space, Ecology Letters 16, no.11 (Oct 2012): 31–38.https://doi.org/10.1111/ele.12007Martijn van de Pol, Helen L. Osmond, Andrew Cockburn Fluctuations in population composition dampen the impact of phenotypic plasticity on trait dynamics in superb fairy-wrens, Journal of Animal Ecology 81, no.22 (Oct 2011): 411–422.https://doi.org/10.1111/j.1365-2656.2011.01919.xA. J. WILSON, M. B. MORRISSEY, M. J. ADAMS, C. A. WALLING, F. E. GUINNESS, J. M. PEMBERTON, T. H. CLUTTON-BROCK, L. E. B. KRUUK Indirect genetics effects and evolutionary constraint: an analysis of social dominance in red deer, Cervus elaphus, Journal of Evolutionary Biology 24, no.44 (Feb 2011): 772–783.https://doi.org/10.1111/j.1420-9101.2010.02212.xJarrod D. Hadfield, Alastair J. Wilson, Loeske E. B. Kruuk Cryptic Evolution: Does Environmental Deterioration Have a Genetic Basis?, Genetics 187, no.44 (Jan 2011): 1099–1113.https://doi.org/10.1534/genetics.110.124990Josephine M. Pemberton Evolution of quantitative traits in the wild: mind the ecology, Philosophical Transactions of the Royal Society B: Biological Sciences 365, no.15521552 (Aug 2010): 2431–2438.https://doi.org/10.1098/rstb.2010.0108Yoshinari Tanaka Apparent directional selection by biased pleiotropic mutation, Genetica 138, no.77 (Mar 2010): 717–723.https://doi.org/10.1007/s10709-010-9451-2Markus P. Ahola, Toni Laaksonen, Tapio Eeva, Esa Lehikoinen Great tits lay increasingly smaller clutches than selected for: a study of climate- and density-related changes in reproductive traits, Journal of Animal Ecology 78, no.66 (Nov 2009): 1298–1306.https://doi.org/10.1111/j.1365-2656.2009.01596.xMARIE-HÉLÈNE DICKEY, GILLES GAUTHIER, MARIE-CHRISTINE CADIEUX Climatic effects on the breeding phenology and reproductive success of an arctic-nesting goose species, Global Change Biology 14, no.99 (Jun 2008): 1973–1985.https://doi.org/10.1111/j.1365-2486.2008.01622.xP. GIENAPP, C. TEPLITSKY, J. S. ALHO, J. A. MILLS, J. MERILÄ Climate change and evolution: disentangling environmental and genetic responses, Molecular Ecology 17, no.11 (Jan 2008): 167–178.https://doi.org/10.1111/j.1365-294X.2007.03413.xPamela J. Yeh, Mark E. Hauber, Trevor D. Price Alternative nesting behaviours following colonisation of a novel environment by a passerine bird, Oikos 116, no.99 (Sep 2007): 1473–1480.https://doi.org/10.1111/j.0030-1299.2007.15910.x Anne Charmantier , Christopher Perrins , Robin H. McCleery , and Ben C. Sheldon Evolutionary Response to Selection on Clutch Size in a Long‐Term Study of the Mute Swan. A. Charmantier et al., The American Naturalist 167, no.33 (Jul 2015): 453–465.https://doi.org/10.1086/499378Phillip Gienapp, Erik Postma, Marcel E. Visser WHY BREEDING TIME HAS NOT RESPONDED TO SELECTION FOR EARLIER BREEDING IN A SONGBIRD POPULATION, Evolution 60, no.1111 (Jan 2006): 2381.https://doi.org/10.1554/06-235.1Ary Hoffmann, Vanessa Kellermann Revisiting Heritable Variation and Limits to Species Distribution: Recent Developments, Israel Journal of Ecology & Evolution 52, no.3-43-4 (Mar 2013): 247–261.https://doi.org/10.1560/IJEE_52_3-4_247 Gregory F. Grether Environmental Change, Phenotypic Plasticity, and Genetic Compensation. G. F. Grether, The American Naturalist 166, no.44 (Jul 2015): E115–E123.https://doi.org/10.1086/432023Erik Postma, Arie J. van Noordwijk GENETIC VARIATION FOR CLUTCH SIZE IN NATURAL POPULATIONS OF BIRDS FROM A REACTION NORM PERSPECTIVE, Ecology 86, no.99 (Sep 2005): 2344–2357.https://doi.org/10.1890/04-0348 Dany Garant , Loeske E. B. Kruuk , Robin H. McCleery , and Ben C. Sheldon Evolution in a Changing Environment: A Case Study with Great Tit Fledging Mass. D. Garant et al., The American Naturalist 164, no.55 (Jul 2015): E115–E129.https://doi.org/10.1086/424764Loeske E. B. Kruuk Estimating genetic parameters in natural populations using the ‘animal model’, Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 359, no.14461446 (Jun 2004): 873–890.https://doi.org/10.1098/rstb.2003.1437B. C. Sheldon, L. E. B. Kruuk, J. Merilä NATURAL SELECTION AND INHERITANCE OF BREEDING TIME AND CLUTCH SIZE IN THE COLLARED FLYCATCHER, Evolution 57, no.22 (Jan 2003): 406.https://doi.org/10.1554/0014-3820(2003)057[0406:NSAIOB]2.0.CO;2D. Réale, D. Berteaux, A. G. McAdam, S. Boutin LIFETIME SELECTION ON HERITABLE LIFE-HISTORY TRAITS IN A NATURAL POPULATION OF RED SQUIRRELS, Evolution 57, no.1010 (Jan 2003): 2416.https://doi.org/10.1554/02-346Evan G. Cooch, Emmanuelle Cam, William Link Occam's shadow: Levels of analysis in evolutionary ecology--where to next?, Journal of Applied Statistics 29, no.1-41-4 (May 2010): 19–48.https://doi.org/10.1080/02664760120108421Loeske E. B. Kruuk, Jon Slate, Josephine M. Pemberton, Sue Brotherstone, Fiona Guinness, Tim Clutton-Brock ANTLER SIZE IN RED DEER: HERITABILITY AND SELECTION BUT NO EVOLUTION, Evolution 56, no.88 (Jan 2002): 1683.https://doi.org/10.1554/0014-3820(2002)056[1683:ASIRDH]2.0.CO;2J. Merilä, L. E. B. Kruuk, B. C. Sheldon Cryptic evolution in a wild bird population, Nature 412, no.68426842 (Jul 2001): 76–79.https://doi.org/10.1038/35083580J. Merilä, B. C. Sheldon, L. E. B. Kruuk Explaining stasis: Microevolutionary studies in natural populations, (Jan 2001): 199–222.https://doi.org/10.1007/978-94-010-0585-2_13Kjell Larsson, Henk P. van der Jeugd, Ineke T. van der Veen, Pär Forslund BODY SIZE DECLINES DESPITE POSITIVE DIRECTIONAL SELECTION ON HERITABLE SIZE TRAITS IN A BARNACLE GOOSE POPULATION, Evolution 52, no.44 (May 2017): 1169–1184.https://doi.org/10.1111/j.1558-5646.1998.tb01843.xErik Svensson NATURAL SELECTION ON AVIAN BREEDING TIME: CAUSALITY, FECUNDITY-DEPENDENT, AND FECUNDITY-INDEPENDENT SELECTION, Evolution 51, no.44 (May 2017): 1276–1283.https://doi.org/10.1111/j.1558-5646.1997.tb03974.xColleen A. Barber, Roger M. Evans Clutch-Size Manipulations in the Yellow-Headed Blackbird: A Test of the Individual Optimization Hypothesis, The Condor 97, no.22 (May 1995): 352–360.https://doi.org/10.2307/1369021Aldo Poiani, Lars Sommer Jermiin A comparative analysis of some life-history traits between cooperatively and non-cooperatively breeding Australian passerines, Evolutionary Ecology 8, no.55 (Sep 1994): 471–488.https://doi.org/10.1007/BF01238252T. D. Williams, D. B. Lank, F. Cooke, R. F. Rockwell Fitness consequences of egg-size variation in the lesser snow goose, Oecologia 96, no.33 (Dec 1993): 331–338.https://doi.org/10.1007/BF00317502Aldo Poiani Effects of clutch size manipulations on reproductive behaviour and nesting success in the cooperatively breeding Bell Miner (Manorina melanophrys), Evolutionary Ecology 7, no.44 (Jul 1993): 329–356.https://doi.org/10.1007/BF01237866Douglas W. Morris OPTIMUM BROOD SIZE: TESTS OF ALTERNATIVE HYPOTHESES, Evolution 46, no.66 (May 2017): 1848–1861.https://doi.org/10.1111/j.1558-5646.1992.tb01173.xSteven A. Frank, Montgomery Slatkin Fisher's fundamental theorem of natural selection, Trends in Ecology & Evolution 7, no.33 (Mar 1992): 92–95.https://doi.org/10.1016/0169-5347(92)90248-AJ. Timothy Wootton, Bruce E. Young, David W. Winkler ECOLOGICAL VERSUS EVOLUTIONARY HYPOTHESES: DEMOGRAPHIC STASIS AND THE MURRAY-NOLAN CLUTCH SIZE EQUATION, Evolution 45, no.88 (May 2017): 1947–1950.https://doi.org/10.1111/j.1558-5646.1991.tb02699.x
Referência(s)