Activation of hsr 203, a Plant Gene Expressed During Incompatible Plant-Pathogen Interactions, Is Correlated with Programmed Cell Death
1998; American Phytopathological Society; Volume: 11; Issue: 6 Linguagem: Inglês
10.1094/mpmi.1998.11.6.544
ISSN1943-7706
AutoresDominique Pontier, Maurice Tronchet, Peter Rogowsky, Eric Lam, Dominique Roby,
Tópico(s)Plant Virus Research Studies
Resumohsr203J is a tobacco gene whose activation is rapid, highly localized, and specific for incompatible interactions between tobacco and the bacterial pathogen Ralstonia solanacearum. The effect of other hypersensitive response (HR)-inducing pathogens and elicitors has been tested with transgenic plants containing the hsr203J promoter-GUS reporter gene fusion, and confirms the generality of the preferential inducibility of the hsr203J gene promoter during incompatible interactions: bacterial and viral pathogens inducing an HR in tobacco were able to induce the promoter fusion, as were inducers of HR-like responses such as harpin, elicitins, and PopA1 proteins. A tomato hsr203 homologous cDNA was isolated (Lehsr203) and used to examine the effect of avr gene products on the expression of such genes. Lehsr203 was shown to be rapidly and transiently induced in leaves of the tomato Cf-9 line, following Avr9 product infiltration, but not in those of the Cf-0 line. Among potential effectors of HR or resistance such as H 2 O 2 , salicylic acid, methyl jasmonate, and 2,6-dichloro-isonicotinic acid (INA), none is able to induce a significant increase in promoter activation. In contrast, heavy metals that cause leaf necrosis can trigger such an activation. In addition, hsr203-GUS fusion expression is detected in transgenic tobacco lines expressing the bO gene and exhibiting spontaneous HR-like lesions. Taken together, these results demonstrate a strong correlation between hsr203 and genetically controlled cell death in tobacco and tomato. The expression of this gene should be a useful marker for programmed cell death occurring in response not only to diverse pathogens, but also to diverse death-triggering extracellular agents.
Referência(s)