The metastatic potential of canine mammary tumours can be assessed by mRNA expression analysis of connective tissue modulators
2011; Wiley; Volume: 11; Issue: 1 Linguagem: Inglês
10.1111/j.1476-5829.2011.00303.x
ISSN1476-5829
AutoresOle Lamp, K. U. Honscha, Sabine Schweizer, Anne B. Heckmann, S. Blaschzik, A. Einspanier,
Tópico(s)Veterinary Equine Medical Research
ResumoVeterinary and Comparative OncologyVolume 11, Issue 1 p. 70-85 The metastatic potential of canine mammary tumours can be assessed by mRNA expression analysis of connective tissue modulators O. Lamp, O. Lamp Institute of Physiological Chemistry, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, GermanySearch for more papers by this authorK. U. Honscha, K. U. Honscha Institute of Physiology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, GermanySearch for more papers by this authorS. Schweizer, S. Schweizer Department of Small Animal Medicine, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, GermanySearch for more papers by this authorA. Heckmann, A. Heckmann Institute of Pathology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, GermanySearch for more papers by this authorS. Blaschzik, S. Blaschzik Department of Small Animal Medicine, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, GermanySearch for more papers by this authorA. Einspanier, Corresponding Author A. Einspanier Institute of Physiological Chemistry, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, GermanyProf. Dr Almuth EinspanierInstitute of Physiological ChemistryFaculty of Veterinary MedicineUniversity of LeipzigAn den Tierkliniken 1, Leipzig 04103, Germanye-mail:[email protected]Search for more papers by this author O. Lamp, O. Lamp Institute of Physiological Chemistry, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, GermanySearch for more papers by this authorK. U. Honscha, K. U. Honscha Institute of Physiology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, GermanySearch for more papers by this authorS. Schweizer, S. Schweizer Department of Small Animal Medicine, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, GermanySearch for more papers by this authorA. Heckmann, A. Heckmann Institute of Pathology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, GermanySearch for more papers by this authorS. Blaschzik, S. Blaschzik Department of Small Animal Medicine, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, GermanySearch for more papers by this authorA. Einspanier, Corresponding Author A. Einspanier Institute of Physiological Chemistry, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, GermanyProf. Dr Almuth EinspanierInstitute of Physiological ChemistryFaculty of Veterinary MedicineUniversity of LeipzigAn den Tierkliniken 1, Leipzig 04103, Germanye-mail:[email protected]Search for more papers by this author First published: 17 November 2011 https://doi.org/10.1111/j.1476-5829.2011.00303.xCitations: 11Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Metastases are the crucial factor for the prognosis of canine mammary tumours (CMTs). In women, the peptide hormone relaxin is linked with metastatic breast cancer. Therefore, the impact of relaxin and its receptors on matrix metalloproteinase (MMP) expression, metastatic disease and survival was analysed using qRT-PCR and immunohistochemistry of CMT samples from 59 bitches. The expression of relaxin and its receptor RXFP1 (relaxin family peptide receptor 1) was discovered on gene and protein levels. Intratumoural relaxin mRNA expression and relaxin plasma levels had no prognostic value. High mRNA levels RXFP1 were an independent marker of metastatic potential, with a more than 15-fold risk increase, and a predictor for shorter survival. Also, MMP-2 expression was associated with early death because of CMT. The mRNA expressions of relaxin, RXFP1 and MMP-2 were positively correlated indicating a common pathogenetic linkage. Thus, RXFP1 is proposed as a new early marker of metastatic potential in CMT and a possible therapeutic target. References 1 Dorn CR, Taylor DON, Schneide R, Hibbard HH and Klauber MR. Survey of animal neoplasms in Alameda and Contra Costa Counties California II. Cancer morbidity in dogs and cats from Alameda County. Journal of the National Cancer Institute 1968; 40: 307–318. CASPubMedWeb of Science®Google Scholar 2 Brodey RS, Goldschmidt MH and Roszel JR. Canine mammary-gland neoplasms. Journal of the American Animal Hospital Association 1983; 19: 61–90. Web of Science®Google Scholar 3 Philibert JC, Snyder PW, Glickman N, Glickman LT, Knapp DW and Waters DJ. Influence of host factors on survival in dogs with malignant mammary gland tumors. Journal of Veterinary Internal Medicine 2003; 17: 102–106. 10.1111/j.1939-1676.2003.tb01330.x PubMedWeb of Science®Google Scholar 4 Misdorp W, Hellmen E, Else RW and Lipscomb TP. Histological Classification of Mammary Tumors of the Dog and the Cat, 1st edn., Washington DC, Armed Forces Institute of Pathology, 1999. Web of Science®Google Scholar 5 Owen LN. TNM Classification of Tumours in Domestic Animals, 1st edn., Geneva, World Health Organization, 1980: 21–25. Google Scholar 6 Klopfleisch R, von Euler H, Sarli G, Pinho SS, Gaertner F and Gruber AD. Molecular carcinogenesis of canine mammary tumors: news from an old disease. Veterinary Pathology 2011; 48: 98–116. 10.1177/0300985810390826 CASPubMedWeb of Science®Google Scholar 7 Rivera P and von Euler H. Molecular biological aspects on canine and human mammary tumors. Veterinary Pathology 2011; 48: 132–146. 10.1177/0300985810387939 CASPubMedWeb of Science®Google Scholar 8 Binder C, Simon A, Binder L, Hagemann T, Schulz M, Emons G, Trumper L and Einspanier A. Elevated concentrations of serum relaxin are associated with metastatic disease in breast cancer patients. Breast Cancer Research and Treatment 2004; 87: 157–166. 10.1023/B:BREA.0000041622.30169.16 CASPubMedWeb of Science®Google Scholar 9 Silvertown JD, Geddes BJ and Summerlee AJ. Adenovirus-mediated expression of human prorelaxin promotes the invasive potential of canine mammary cancer cells. Endocrinology 2003; 144: 3683–3691. 10.1210/en.2003-0248 CASPubMedWeb of Science®Google Scholar 10 Binder C, Hagemann T, Husen B, Schulz M and Einspanier A. Relaxin enhances in-vitro invasiveness of breast cancer cell lines by up-regulation of matrix metalloproteases. Molecular Human Reproduction 2002; 8: 789–796. 10.1093/molehr/8.9.789 CASPubMedWeb of Science®Google Scholar 11 Radestock Y, Hoang-Vu C and Hombach-Klonisch S. Relaxin reduces xenograft tumour growth of human MDA-MB-231 breast cancer cells. Breast Cancer Research 2008; 10: 15. 10.1186/bcr2136 CASWeb of Science®Google Scholar 12 Chakraborti S, Mandal M, Das S, Mandal A and Chakraborti T. Regulation of matrix metalloproteinases: an overview. Molecular and Cellular Biochemistry 2003; 253: 269–285. 10.1023/A:1026028303196 CASPubMedWeb of Science®Google Scholar 13 Papparella S, Restucci B, Maiolino P and De VG. Immunohistochemical distribution of type IV collagenase in normal, dysplastic and neoplastic canine mammary gland. Journal of Comparative Pathology 1997; 117: 277–282. 10.1016/S0021-9975(97)80023-0 CASPubMedWeb of Science®Google Scholar 14 Papparella S, Restucci B, Paciello O and Maiolino P. Expression of matrix metalloprotease-2 (MMP-2) and the activator membrane type 1 (MT1-MMP) in canine mammary carcinomas. Journal of Comparative Pathology 2002; 126: 271–276. 10.1053/jcpa.2002.0552 CASPubMedWeb of Science®Google Scholar 15 Yokota H, Kumata T, Taketaba S, Kobayashi T, Moue H, Taniyama H, Hirayama K, Kagawa Y, Itoh N, Fujita O, Nakade T and Yuasa A. High expression of 92 kDa type IV collagenase (matrix metalloproteinase-9) in canine mammary adenocarcinoma. Biochimica et Biophysica Acta 2001; 1568: 7–12. 10.1016/S0304-4165(01)00192-1 CASPubMedWeb of Science®Google Scholar 16 Hirayama K, Yokota H, Onai R, Kobayashi T, Kumata T, Kihara K, Okamoto M, Sako T, Nakade T, Izumisawa Y and Taniyama H. Detection of matrix metalloproteinases in canine mammary tumours: analysis by immunohistochemistry and zymography. Journal of Comparative Pathology 2002; 127: 249–256. 10.1053/jcpa.2002.0590 CASPubMedWeb of Science®Google Scholar 17 Kawai K, Uetsuka K, Doi K and Nakayama H. The activity of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in mammary tumors of dogs and rats. The Journal of Veterinary Medical Science 2006; 68: 105–111. 10.1292/jvms.68.105 CASPubMedWeb of Science®Google Scholar 18 Vinothini G, Balachandran C and Nagini S. Evaluation of molecular markers in canine mammary tumors: correlation with histological grading. Oncology Research 2009; 18: 193–201. 10.3727/096504009X12596189659042 CASPubMedWeb of Science®Google Scholar 19 Lamp O, Honscha KU, Jakob J, Lamp J, Schweizer S, Reischauer A, Gottschalk J, Hahn A, Ebert M, Rothemund S, Blaschzik S and Einspanier A. Investigation of the local expression of the relaxin system in canine mammary tumours. Reproduction in Domestic Animals 2009; 44: 224–229. 10.1111/j.1439-0531.2009.01385.x PubMedWeb of Science®Google Scholar 20 Schweizer S, Lamp O, Reischauer A, Lamp J, Blaschzik S, Grevel V and Einspanier A. Investigation of the plasma relaxin levels in bitches with mammary gland tumours as a potential prognostic marker. Reproduction in Domestic Animals 2007; 42(Suppl. 1): 29. PubMedWeb of Science®Google Scholar 21 Clemente M, Perez-Alenza MD and Pena L. Metastasis of canine inflammatory versus non-inflammatory mammary tumours. Journal of Comparative Pathology 2010; 143: 157–163. 10.1016/j.jcpa.2010.02.002 CASPubMedWeb of Science®Google Scholar 22 Einspanier A, Bunck C, Salpigtidou P, Marten A, Fuhrmann K, Hoppen HO and Gunzel-Apel AR. Relaxin: ein wichtiger Graviditatsindikator bei der Hundin [Relaxin: an important indicator of canine pregnancy]. Deutsche Tierarztliche Wochenschrift 2002; 109: 8–12. CASPubMedWeb of Science®Google Scholar 23 Kaskous S, Gottschalk J, Hippel T and Grun E. The behavior of growth-influencing and steroid hormones in the blood plasma during pregnancy of Awassi sheep in Syria. Berlin Munchner Tierarztliche Wochenschrift 2003; 116: 108–116. CASPubMedWeb of Science®Google Scholar 24 Etschmann B, Wilcken B, Stoevesand K, von der Schulenburg A and Sterner-Kock A. Selection of reference genes for quantitative real-time PCR analysis in canine mammary tumors using the GeNorm algorithm. Veterinary Pathology 2006; 43: 934–942. 10.1354/vp.43-6-934 CASPubMedWeb of Science®Google Scholar 25 Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R and Leunissen JAM. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Research 2007; 35: W71–W74. 10.1093/nar/gkm306 PubMedWeb of Science®Google Scholar 26 Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W and Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 1997; 25: 3389–3402. 10.1093/nar/25.17.3389 CASPubMedWeb of Science®Google Scholar 27 Pattyn F, Speleman F, De Paepe A and Vandesompele J. RTPrimerDB: the real-time PCR primer and probe database. Nucleic Acids Research 2003; 31: 122–123. 10.1093/nar/gkg011 CASPubMedWeb of Science®Google Scholar 28 Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff MJ and Moorman AF. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Research 2009; 37: e45. 10.1093/nar/gkp045 CASPubMedWeb of Science®Google Scholar 29 Brinkhof B, Spee B, Rothuizen J and Penning LC. Development and evaluation of canine reference genes for accurate quantification of gene expression. Analytical Biochemistry 2006; 356: 36–43. 10.1016/j.ab.2006.06.001 CASPubMedWeb of Science®Google Scholar 30 Andersen CL, Jensen JL and Orntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research 2004; 64: 5245–5250. 10.1158/0008-5472.CAN-04-0496 CASPubMedWeb of Science®Google Scholar 31 Ivell R, Balvers M, Pohnke Y, Telgmann R, Bartsch O, Milde-Langosch K, Bmberger AM and Einspanoier A. Immunoexpression of the relaxin receptor LGR7 in breast and uterine tissues of humans and primates. Reproductive Biology and Endocrinology 2003; 1: 114. DOI: 10.1186/14777827-1-114. 10.1186/1477-7827-1-114 PubMedGoogle Scholar 32 Steinetz BG, Goldsmith LT, Hasan SH and Lust G. Diurnal-variation of serum progesterone, but not relaxin, prolactin or estradiol-17-beta in the pregnant bitch. Endocrinology 1990; 127: 1057–1063. 10.1210/endo-127-3-1057 CASPubMedWeb of Science®Google Scholar 33 Dschietzig T, Richter C, Bartsch C, Laule M, Armbruster FP, Baumann G and Stangl K. The pregnancy hormone relaxin is a player in human heart failure. FASEB Journal 2001; 15: 2187–2195. 10.1096/fj.01-0070com CASPubMedWeb of Science®Google Scholar 34 Hsu SY, Nakabayashi K, Nishi S, Kumagai J, Kudo M, Sherwood OD and Hsueh AJ. Activation of orphan receptors by the hormone relaxin. Science 2002; 295: 671–674. 10.1126/science.1065654 CASPubMedWeb of Science®Google Scholar 35 Pukrop T, Bleckmann A, Einspanier A and Binder C. Rapid progression of hormone receptor-negative breast cancer concomitant with ovarian stimulation-a paradoxon? Annals of Oncology 2009; 20: 2020–2022. 10.1093/annonc/mdp457 CASPubMedWeb of Science®Google Scholar 36 Bani D, Riva A, Bigazzi M and Sacchi TB. Differentiation of breast-cancer cells in-vitro is promoted by the concurrent influence of myoepithelial cells and relaxin. British Journal of Cancer 1994; 70: 900–904. 10.1038/bjc.1994.417 CASPubMedWeb of Science®Google Scholar 37 Klonisch T, Bialek J, Radestock Y, Hoang-Vu C and Hombach-Klonisch S. Relaxin-like ligand-receptor systems are autocrine/paracrine effectors in tumor cells and modulate cancer progression and tissue invasiveness. In: Relaxin and Related Peptides, 1st edn., Berlin, Springer-Verlag, 2007: 104–118. 10.1007/978-0-387-74672-2_8 Web of Science®Google Scholar 38 Steinetz BG, Goldsmith LT, Harvey HJ and Lust G. Serum relaxin and progesterone concentrations in pregnant, pseudopregnant, and ovariectomized, progestin-treated pregnant bitches: detection of relaxin as a marker of pregnancy. American Journal of Veterinary Research 1989; 50: 68–71. CASPubMedWeb of Science®Google Scholar 39 Klonisch T, Hombach-Klonisch S, Froehlich C, Kauffold J, Steger K, Steinetz BG and Fischer B. Canine preprorelaxin: nucleic acid sequence and localization within the canine placenta. Biology of Reproduction 1999; 60: 551–557. 10.1095/biolreprod60.3.551 CASPubMedWeb of Science®Google Scholar 40 Tsutsui T and Stewart DR. Determination of the source of relaxin immunoreactivity during pregnancy in the dog. Journal of Veterinary Medical Science 1991; 53: 1025–1029. 10.1292/jvms.53.1025 CASPubMedWeb of Science®Google Scholar 41 Yamagami T, Kobayashi T, Takahashi K and Sugiyama M. Prognosis for canine malignant mammary tumors based on TNM and histologic classification. Journal of Veterinary Medical Science 1996; 58: 1079–1083. 10.1292/jvms.58.11_1079 CASPubMedWeb of Science®Google Scholar 42 Bostock DE. Canine and feline mammary neoplasms. British Veterinary Journal 1986; 142: 506–515. 10.1016/0007-1935(86)90107-7 PubMedWeb of Science®Google Scholar 43 Sorensen KC, Newman RG, Kitchell BE, Schaeffer DJ and Siegel AM. Isolation, characterization, and expression of stromelysin-1 in primary tumors of dogs. American Journal of Veterinary Research 2005; 66: 1526–1535. 10.2460/ajvr.2005.66.1526 CASPubMedWeb of Science®Google Scholar 44 Unemori EN and Amento EP. Relaxin modulates synthesis and secretion of procollagenase and collagen by human dermal fibroblasts. Journal of Biological Chemistry 1990; 265: 10681–10685. CASPubMedWeb of Science®Google Scholar 45 Unemori EN, Pickford LB, Salles AL, Piercy CE, Grove BH, Erikson ME and Amento EP. Relaxin induces an extracellular matrix-degrading phenotype in human lung fibroblasts in vitro and inhibits lung fibrosis in a murine model in vivo. Journal of Clinical Investigation 1996; 98: 2739–2745. 10.1172/JCI119099 CASPubMedWeb of Science®Google Scholar 46 Palejwala S, Stein DE, Weiss G, Monia BP, Tortoriello D and Goldsmith LT. Relaxin positively regulates matrix metalloproteinase expression in human lower uterine segment fibroblasts using a tyrosine kinase signaling pathway. Endocrinology 2001; 142: 3405–3413. 10.1210/endo.142.8.8295 CASPubMedWeb of Science®Google Scholar 47 Henneman S, Bildt MM, Degroot J, Kuijpers-Jagtman AM and Von den Hoff JW. Relaxin stimulates MMP-2 and alpha-smooth muscle actin expression by human periodontal ligament cells. Archives of Oral Biology 2008; 53: 161–167. 10.1016/j.archoralbio.2007.08.010 CASPubMedWeb of Science®Google Scholar 48 Lowndes K, Amano A, Yamamoto SY and Bryant-Greenwood GD. The human relaxin receptor (LGR7): expression in the fetal membranes and placenta. Placenta 2006; 27: 610–618. 10.1016/j.placenta.2005.07.011 CASPubMedWeb of Science®Google Scholar 49 Mazella J, Tang M and Tseng L. Disparate effects of relaxin and TGF beta 1: relaxin increases, but TGF beta 1 inhibits, the relaxin receptor and the production of IGFBP-1 in human endometrial stromal/decidual cells. Human Reproduction 2004; 19: 1513–1518. 10.1093/humrep/deh274 CASPubMedWeb of Science®Google Scholar 50 Halls ML and Cooper DMF. Sub-picomolar relaxin signalling by a pre-assembled RXFP1, AKAP79, AC2, beta-arrestin 2, PDE4D3 complex. EMBO Journal 2010; 29: 2772–2787. 10.1038/emboj.2010.168 CASPubMedWeb of Science®Google Scholar 51 Callander GE, Thomas WG and Bathgate RAD. Prolonged RXFP1 and RXFP2 signaling can be explained by poor internalization and a lack of beta-arrestin recruitment. American Journal of Physiology-Cell Physiology 2009; 296: C1058–C1066. 10.1152/ajpcell.00581.2008 CASPubMedWeb of Science®Google Scholar 52 Kong RCK, Shilling PJ, Lobb DK, Gooley PR and Bathgate RAD. Membrane receptors: structure and function of the relaxin family peptide receptors. Molecular and Cellular Endocrinology 2010; 320: 1–15. 10.1016/j.mce.2010.02.003 CASPubMedWeb of Science®Google Scholar 53 Simon D, Schoenrock D, Nolte I, Baumgartner W, Barron R and Mischke R. Cytologic examination of fine-needle aspirates from mammary gland tumors in the dog: diagnostic accuracy with comparison to histopathology and association with postoperative outcome. Veterinary Clinical Pathology 2009; 38: 521–528. 10.1111/j.1939-165X.2009.00150.x PubMedWeb of Science®Google Scholar 54 Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J and Wittwer CT. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry 2009; 55: 611–622. 10.1373/clinchem.2008.112797 CASPubMedWeb of Science®Google Scholar 55 Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A and Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 2002; 3:research0034.1-0034.11 PubMedGoogle Scholar 56 Feng S, Agoulnik IU, Bogatcheva NV, Kamat AA, Kwabi-Addo B, Li R, Ayala G, Ittmann MM and Agoulnik AI. Relaxin promotes prostate cancer progression. Clinical Cancer Research 2007; 13: 1695–1702. 10.1158/1078-0432.CCR-06-2492 CASPubMedWeb of Science®Google Scholar 57 Hossain MA, Samuel CS, Binder C, Hewitson TD, Tregear GW, Wade JD and Bathgate RAD. The chemically synthesized human relaxin-2 analog, B-R13/17K H2, is an RXFP1 antagonist. Amino Acids 2010; 39: 409–416. 10.1007/s00726-009-0454-1 CASPubMedWeb of Science®Google Scholar 58 Silvertown JD, Symes JC, Neschadim A, Nonaka T, Kao JCH, Summerlee AJS and Medin JA. Analog of H2 relaxin exhibits antagonistic properties and impairs prostate tumor growth. FASEB Journal 2007; 21: 754–765. 10.1096/fj.06-6847com CASPubMedWeb of Science®Google Scholar 59 Chang CC, Tsai MH, Liao JW, Chan JPW, Wong ML and Chang SC. Evaluation of hormone receptor expression for use in predicting survival of female dogs with malignant mammary gland tumors. Journal of the American Veterinary Medical Association 2009; 235: 391–396. 10.2460/javma.235.4.391 CASPubMedWeb of Science®Google Scholar 60 Manee-in S, Srisuwatanasagul S, Lohachit C and Sirivaidyapong S. The number of ERα and PR in the mammary glands of bitches with and without tumor mass using immunohistochemical assay. Comparative Clinical Pathology 2009; 18: 221–227. 10.1007/s00580-008-0786-3 CASGoogle Scholar 61 Martin de Las Mulas J, Millan Y and Dios R. A prospective analysis of immunohistochemically determined estrogen receptor alpha and progesterone receptor expression and host and tumor factors as predictors of disease-free period in mammary tumors of the dog. Veterinary Pathology 2005; 42: 200–212. 10.1354/vp.42-2-200 PubMedWeb of Science®Google Scholar 62 Nieto A, Pena L, Perez-Alenza MD, Sanchez MA, Flores JM and Castano M. Immunohistologic detection of estrogen receptor alpha in canine mammary tumors: clinical and pathologic associations and prognostic significance. Veterinary Pathology 2000; 37: 239–247. 10.1354/vp.37-3-239 CASPubMedWeb of Science®Google Scholar 63 Alarid ET, Bakopoulos N and Solodin N. Proteasome-mediated proteolysis of estrogen receptor: a novel component in autologous down-regulation. Molecular Endocrinology 1999; 13: 1522–1534. 10.1210/mend.13.9.0337 CASPubMedWeb of Science®Google Scholar 64 Lange CA, Shen TJ and Horwitz KB. Phosphorylation of human progesterone receptors at serine-294 by mitogen-activated protein kinase signals their degradation by the 26S proteasome. Proceedings of the National Academy of Sciences of the United States of America 2000; 97: 1032–1037. 10.1073/pnas.97.3.1032 CASPubMedWeb of Science®Google Scholar 65 Nawaz Z, Lonard DM, Dennis AP, Smith CL and O'Malley BW. Proteasome-dependent degradation of the human estrogen receptor. Proceedings of the National Academy of Sciences of the United States of America 1999; 96: 1858–1862. 10.1073/pnas.96.5.1858 CASPubMedWeb of Science®Google Scholar Citing Literature Volume11, Issue1March 2013Pages 70-85 ReferencesRelatedInformation
Referência(s)