Carta Acesso aberto Revisado por pares

Disease Burdens Associated with PM 2.5 Exposure: How a New Model Provided Global Estimates

2014; National Institute of Environmental Health Sciences; Volume: 122; Issue: 4 Linguagem: Inglês

10.1289/ehp.122-a111

ISSN

1552-9924

Autores

Carrie Arnold,

Tópico(s)

Climate Change and Health Impacts

Resumo

Vol. 122, No. 4 News | Science SelectionsOpen AccessDisease Burdens Associated with PM2.5 Exposure: How a New Model Provided Global Estimates Carrie Arnold Carrie Arnold Published:1 April 2014https://doi.org/10.1289/ehp.122-A111Cited by:12View Article in:中文版AboutSectionsPDF ToolsDownload CitationsTrack Citations ShareShare onFacebookTwitterLinked InReddit Like traffic jams and cell phones, particulate air pollution is a reality of modern living. Whether it's from cigarette smoking, industrial emissions, or the burning of wood and dung for fuel, fine particulate matter (PM2.5) has been strongly linked to cardiovascular disease, inflammation, lung cancer, and other lung diseases.1,2 As part of the Global Burden of Disease Study (GBD) 2010 collaboration,3 an international team of environmental health scientists estimated the worldwide disease burden attributable to PM2.5 exposure.4 In this issue of EHP, they explain the underpinnings of how they did it.5"This study is quite an important achievement," says Robert Brook, a physician at the University of Michigan who was not involved with the research. "Currently, scientists have no other way to estimate these risks."The GBD 2010 team incorporated information about the health risks of PM2.5 from ambient air pollution, active smoking, secondhand smoke, and indoor burning of solid fuels into an integrated exposure–response model.Clockwise from upper right: © Zirafek/iStockphoto; © David Young-Wolff/Getty; © Crispin Hughes/Panos; © Mac99/iStockphotoIn the past, risk models for PM2.5 and other air pollutants have been derived from work done almost exclusively in North America and Europe. But air pollution levels around the world vary widely—by one estimate, annual average PM2.5 concentrations in the United States top out at 20–40 µg/m3 (in Texas), compared with 80–130 µg/m3 in parts of China and India.6Estimating the health risks of PM2.5 in developing countries, where few primary epidemiological studies have been conducted, has therefore required extrapolation to higher concentrations of air pollutants.7 Further complicating matters is evidence that the relationship between mortality risk and PM2.5 exposure is not linear, meaning risk appears to increase more rapidly at lower exposures than at higher ones.8,9The GBD 2010 team incorporated information about the health risks of PM2.5 from ambient air pollution, active smoking, secondhand smoke, and indoor burning of solid fuels into an integrated exposure–response model. The amounts of pollution caused by smoking, secondhand smoke, and indoor fuel use are well documented, as are the resulting health problems.10,8,11The researchers combined this knowledge with what is known about different concentrations of ambient air pollution around the world to estimate relative risks of dying from a variety of illnesses, including ischemic heart disease, cerebrovascular disease (stroke), chronic obstructive pulmonary disease, and lung cancer over a range of ambient PM2.5 exposures from very low to very high. The model also estimates years of healthy life lost due to PM2.5-related acute lower respiratory illnesses in children under the age of 5 years.5"We integrated as much information on exposure to particulate matter and mortality from as many different sources as we possibly could," says lead author Richard Burnett, an environmental scientist at Health Canada. "Because some of these exposures had very high concentrations, we could build a risk model over the entire global range of potential exposures."The risk curves for different illnesses were not identical. Whereas the estimated risk of lung cancer and child acute lower respiratory illness appeared to continually increase along with increasing concentrations of PM2.5, the curves for heart disease and stroke rapidly increased at lower concentrations of PM2.5 before leveling off.5One of the major advantages of the model is that it can be updated easily, yielding estimates of risk that reflect the latest knowledge. The major limitation of the study is that the researchers assumed the health risks of different types of PM2.5 were the same, says Michael Jerrett, a professor of environmental health sciences at the University of California, Berkeley, who was not involved with the study.PM2.5 is a mixture of many constituents that can vary, depending on the source and the season.12 "There is considerable evidence that some elements of the mixture are less toxic than others," Jerrett says. "However, to try to untangle that and come up with definitive estimates for sulfate versus nitrate versus black carbon would go beyond the capacity of our current scientific evidence to determine accurately." He concludes, "It's a mathematically elegant model that is a major advance over what has been done in the past. It represents the best that we can do with the available information."References1 Loomis Det al.The carcinogenicity of outdoor air pollution.Lancet Oncol 14(13):1262-12632013.; doi:10.1016/S1470-2045(13)70487-X. Crossref, Medline, Google Scholar2 EPA. Integrated Science Assessment for Particulate Matter. EPA/600/R-08/139F. Research Triangle Park, NC:U.S. Environmental Protection Agency (2009). Available: http://www.epa.gov/ncea/pdfs/partmatt/Dec2009/PM_ISA_full.pdf [accessed 17 March 2014]. Google Scholar3 IHME. Global Burden of Diseases, Injuries, and Risk Factors Study 2010 (GBD 2010) [website]. Seattle, WA:Institute for Health Metrics and Evaluation (2014). Available: http://goo.gl/dg5AaC [accessed 17 March 2014]. Google Scholar4 Lim SSet al.A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010.Lancet 380(9859):2224-22602012.; doi:10.1016/S0140-6736(12)61766-823245609. Crossref, Medline, Google Scholar5 Burnett RTet al.An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure.Environ Health Perspect 122(4):397-4032014.; doi:10.1289/ehp.130704924518036. Link, Google Scholar6 Brauer Met al.Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution.Environ Sci Technol 46(2):652-6602012.; doi:10.1021/es202575222148428. Crossref, Medline, Google Scholar7 Cohen AJ, et al. Urban air pollution. In: Comparative Quantification of Health Risks: Global and Regional Burden of Disease Attribution to Selected Major Risk Factors (Ezzati M, et al., eds.). Geneva, Switzerland:World Health Organization (2004). Available: http://www.who.int/publications/cra/chapters/volume2/1353-1434.pdf [accessed 17 March 2014]. Google Scholar8 Pope CA III, et al. Cardiovascular mortality and exposure to fine particulate matter from air pollution and cigarette smoke: shape of the exposure–response relationship. Circulation 120(11):941–948 (2009); http://dx.doi.org/10.1161/CIRCULATIONAHA.109.857888. Google Scholar9 Pope CAet al.Lung cancer and cardiovascular disease mortality associated with particulate matter exposure from ambient air pollution and cigarette smoke: shape of the exposure–response relationships.Environ Health Perspect 119(11):1616-16212011.; doi:10.1289/ehp.110363921768054. Link, Google Scholar10 Invernizzi Get al.Particulate matter from tobacco versus diesel car exhaust: an educational perspective.Tob Control 13(3):219-2212004.; doi:10.1136/tc.2003.00597515333875. Crossref, Medline, Google Scholar11 Kleeman MJet al.Size and composition distribution of fine particulate matter emitted from wood burning, meat charbroiling, and cigarettes.Environ Sci Technol 33(20):3516-35231999.; doi:10.1021/es981277q. Crossref, Google Scholar12 Bell MLet al.Spatial and temporal variation in PM2.5 chemical composition in the United States for health effects studies.Environ Health Perspect 115(7):989-9952007.; doi:10.1289/ehp.962117637911. Link, Google ScholarFiguresReferencesRelatedDetailsCited by Faridi S, Shamsipour M, Krzyzanowski M, Künzli N, Amini H, Azimi F, Malkawi M, Momeniha F, Gholampour A, Hassanvand M and Naddafi K (2018) Long-term trends and health impact of PM 2.5 and O 3 in Tehran, Iran, 2006–2015, Environment International, 10.1016/j.envint.2018.02.026, 114, (37-49), Online publication date: 1-May-2018. Yang S, Sui J, Liu T, Wu W, Xu S, Yin L, Pu Y, Zhang X, Zhang Y, Shen B and Liang G (2018) Trends on PM2.5 research, 1997–2016: a bibliometric study, Environmental Science and Pollution Research, 10.1007/s11356-018-1723-x, 25:13, (12284-12298), Online publication date: 1-May-2018. Chen G, Zhang W, Li S, Williams G, Liu C, Morgan G, Jaakkola J and Guo Y (2017) Is short-term exposure to ambient fine particles associated with measles incidence in China? A multi-city study, Environmental Research, 10.1016/j.envres.2017.03.046, 156, (306-311), Online publication date: 1-Jul-2017. Chen G, Zhang W, Li S, Zhang Y, Williams G, Huxley R, Ren H, Cao W and Guo Y (2017) The impact of ambient fine particles on influenza transmission and the modification effects of temperature in China: A multi-city study, Environment International, 10.1016/j.envint.2016.10.004, 98, (82-88), Online publication date: 1-Jan-2017. Shao Z, Bi J, Ma Z and Wang J (2017) Seasonal trends of indoor fine particulate matter and its determinants in urban residences in Nanjing, China, Building and Environment, 10.1016/j.buildenv.2017.09.002, 125, (319-325), Online publication date: 1-Nov-2017. Song C, He J, Wu L, Jin T, Chen X, Li R, Ren P, Zhang L and Mao H (2017) Health burden attributable to ambient PM 2.5 in China, Environmental Pollution, 10.1016/j.envpol.2017.01.060, 223, (575-586), Online publication date: 1-Apr-2017. Hu L, Lawrence W, Liu Y, Yang B, Zeng X, Chen W and Dong G (2017) Ambient Air Pollution and Morbidity in Chinese Ambient Air Pollution and Health Impact in China, 10.1007/978-981-10-5657-4_6, (123-151), . Xie R, Sabel C, Lu X, Zhu W, Kan H, Nielsen C and Wang H (2016) Long-term trend and spatial pattern of PM2.5 induced premature mortality in China, Environment International, 10.1016/j.envint.2016.09.003, 97, (180-186), Online publication date: 1-Dec-2016. Gao T, Wang X, Chen R, Ngo H and Guo W (2015) Disability adjusted life year (DALY): A useful tool for quantitative assessment of environmental pollution, Science of The Total Environment, 10.1016/j.scitotenv.2014.11.048, 511, (268-287), Online publication date: 1-Apr-2015. Forouzanfar M, Alexander L, Anderson H, Bachman V, Biryukov S, Brauer M, Burnett R, Casey D, Coates M, Cohen A, Delwiche K, Estep K, Frostad J, KC A, Kyu H, Moradi-Lakeh M, Ng M, Slepak E, Thomas B, Wagner J, Aasvang G, Abbafati C, Ozgoren A, Abd-Allah F, Abera S, Aboyans V, Abraham B, Abraham J, Abubakar I, Abu-Rmeileh N, Aburto T, Achoki T, Adelekan A, Adofo K, Adou A, Adsuar J, Afshin A, Agardh E, Al Khabouri M, Al Lami F, Alam S, Alasfoor D, Albittar M, Alegretti M, Aleman A, Alemu Z, Alfonso-Cristancho R, Alhabib S, Ali R, Ali M, Alla F, Allebeck P, Allen P, Alsharif U, Alvarez E, Alvis-Guzman N, Amankwaa A, Amare A, Ameh E, Ameli O, Amini H, Ammar W, Anderson B, Antonio C, Anwari P, Cunningham S, Arnlöv J, Arsenijevic V, Artaman A, Asghar R, Assadi R, Atkins L, Atkinson C, Avila M, Awuah B, Badawi A, Bahit M, Bakfalouni T, Balakrishnan K, Balalla S, Balu R, Banerjee A, Barber R, Barker-Collo S, Barquera S, Barregard L, Barrero L, Barrientos-Gutierrez T, Basto-Abreu A, Basu A, Basu S, Basulaiman M, Ruvalcaba C, Beardsley J, Bedi N, Bekele T, Bell M, Benjet C, Bennett D, Benzian H, Bernabé E, Beyene T, Bhala N, Bhalla A, Bhutta Z, Bikbov B, Abdulhak A, Blore J, Blyth F, Bohensky M, Başara B, Borges G, Bornstein N, Bose D, Boufous S, Bourne R, Brainin M, Brazinova A, Breitborde N, Brenner H, Briggs A, Broday D, Brooks P, Bruce N, Brugha T, Brunekreef B, Buchbinder R, Bui L, Bukhman G, Bulloch A, Burch M, Burney P, Campos-Nonato I, Campuzano J, Cantoral A, Caravanos J, Cárdenas R, Cardis E, Carpenter D, Caso V, Castañeda-Orjuela C, Castro R, Catalá-López F, Cavalleri F, Çavlin A, Chadha V, Chang J, Charlson F, Chen H, Chen W, Chen Z, Chiang P, Chimed-Ochir O, Chowdhury R, Christophi C, Chuang T, Chugh S, Cirillo M, Claßen T, Colistro V, Colomar M, Colquhoun S, Contreras A, Cooper C, Cooperrider K, Cooper L, Coresh J, Courville K, Criqui M, Cuevas-Nasu L, Damsere-Derry J, Danawi H, Dandona L, Dandona R, Dargan P, Davis A, Davitoiu D, Dayama A, de Castro E, De la Cruz-Góngora V, De Leo D, de Lima G, Degenhardt L, del Pozo-Cruz B, Dellavalle R, Deribe K, Derrett S, Jarlais D, Dessalegn M, deVeber G, Devries K, Dharmaratne S, Dherani M, Dicker D, Ding E, Dokova K, Dorsey E, Driscoll T, Duan L, Durrani A, Ebel B, Ellenbogen R, Elshrek Y, Endres M, Ermakov S, Erskine H, Eshrati B, Esteghamati A, Fahimi S, Faraon E, Farzadfar F, Fay D, Feigin V, Feigl A, Fereshtehnejad S, Ferrari A, Ferri C, Flaxman A, Fleming T, Foigt N, Foreman K, Paleo U, Franklin R, Gabbe B, Gaffikin L, Gakidou E, Gamkrelidze A, Gankpé F, Gansevoort R, García-Guerra F, Gasana E, Geleijnse J, Gessner B, Gething P, Gibney K, Gillum R, Ginawi I, Giroud M, Giussani G, Goenka S, Goginashvili K, Dantes H, Gona P, de Cosio T, González-Castell D, Gotay C, Goto A, Gouda H, Guerrant R, Gugnani H, Guillemin F, Gunnell D, Gupta R, Gupta R, Gutiérrez R, Hafezi-Nejad N, Hagan H, Hagstromer M, Halasa Y, Hamadeh R, Hammami M, Hankey G, Hao Y, Harb H, Haregu T, Haro J, Havmoeller R, Hay S, Hedayati M, Heredia-Pi I, Hernandez L, Heuton K, Heydarpour P, Hijar M, Hoek H, Hoffman H, Hornberger J, Hosgood H, Hoy D, Hsairi M, Hu G, Hu H, Huang C, Huang J, Hubbell B, Huiart L, Husseini A, Iannarone M, Iburg K, Idrisov B, Ikeda N, Innos K, Inoue M, Islami F, Ismayilova S, Jacobsen K, Jansen H, Jarvis D, Jassal S, Jauregui A, Jayaraman S, Jeemon P, Jensen P, Jha V, Jiang F, Jiang G, Jiang Y, Jonas J, Juel K, Kan H, Roseline S, Karam N, Karch A, Karema C, Karthikeyan G, Kaul A, Kawakami N, Kazi D, Kemp A, Kengne A, Keren A, Khader Y, Khalifa S, Khan E, Khang Y, Khatibzadeh S, Khonelidze I, Kieling C, Kim D, Kim S, Kim Y, Kimokoti R, Kinfu Y, Kinge J, Kissela B, Kivipelto M, Knibbs L, Knudsen A, Kokubo Y, Kose M, Kosen S, Kraemer A, Kravchenko M, Krishnaswami S, Kromhout H, Ku T, Defo B, Bicer B, Kuipers E, Kulkarni C, Kulkarni V, Kumar G, Kwan G, Lai T, Balaji A, Lalloo R, Lallukka T, Lam H, Lan Q, Lansingh V, Larson H, Larsson A, Laryea D, Lavados P, Lawrynowicz A, Leasher J, Lee J, Leigh J, Leung R, Levi M, Li Y, Li Y, Liang J, Liang X, Lim S, Lindsay M, Lipshultz S, Liu S, Liu Y, Lloyd B, Logroscino G, London S, Lopez N, Lortet-Tieulent J, Lotufo P, Lozano R, Lunevicius R, Ma J, Ma S, Machado V, MacIntyre M, Magis-Rodriguez C, Mahdi A, Majdan M, Malekzadeh R, Mangalam S, Mapoma C, Marape M, Marcenes W, Margolis D, Margono C, Marks G, Martin R, Marzan M, Mashal M, Masiye F, Mason-Jones A, Matsushita K, Matzopoulos R, Mayosi B, Mazorodze T, McKay A, McKee M, McLain A, Meaney P, Medina C, Mehndiratta M, Mejia-Rodriguez F, Mekonnen W, Melaku Y, Meltzer M, Memish Z, Mendoza W, Mensah G, Meretoja A, Mhimbira F, Micha R, Miller T, Mills E, Misganaw A, Mishra S, Ibrahim N, Mohammad K, Mokdad A, Mola G, Monasta L, Hernandez J, Montico M, Moore A, Morawska L, Mori R, Moschandreas J, Moturi W, Mozaffarian D, Mueller U, Mukaigawara M, Mullany E, Murthy K, Naghavi M, Nahas Z, Naheed A, Naidoo K, Naldi L, Nand D, Nangia V, Narayan K, Nash D, Neal B, Nejjari C, Neupane S, Newton C, Ngalesoni F, de Dieu Ngirabega J, Nguyen G, Nguyen N, Nieuwenhuijsen M, Nisar M, Nogueira J, Nolla J, Nolte S, Norheim O, Norman R, Norrving B, Nyakarahuka L, Oh I, Ohkubo T, Olusanya B, Omer S, Opio J, Orozco R, Pagcatipunan R, Pain A, Pandian J, Panelo C, Papachristou C, Park E, Parry C, Caicedo A, Patten S, Paul V, Pavlin B, Pearce N, Pedraza L, Pedroza A, Stokic L, Pekericli A, Pereira D, Perez-Padilla R, Perez-Ruiz F, Perico N, Perry S, Pervaiz A, Pesudovs K, Peterson C, Petzold M, Phillips M, Phua H, Plass D, Poenaru D, Polanczyk G, Polinder S, Pond C, Pope C, Pope D, Popova S, Pourmalek F, Powles J, Prabhakaran D, Prasad N, Qato D, Quezada A, Quistberg D, Racapé L, Rafay A, Rahimi K, Rahimi-Movaghar V, Rahman S, Raju M, Rakovac I, Rana S, Rao M, Razavi H, Reddy K, Refaat A, Rehm J, Remuzzi G, Ribeiro A, Riccio P, Richardson L, Riederer A, Robinson M, Roca A, Rodriguez A, Rojas-Rueda D, Romieu I, Ronfani L, Room R, Roy N, Ruhago G, Rushton L, Sabin N, Sacco R, Saha S, Sahathevan R, Sahraian M, Salomon J, Salvo D, Sampson U, Sanabria J, Sanchez L, Sánchez-Pimienta T, Sanchez-Riera L, Sandar L, Santos I, Sapkota A, Satpathy M, Saunders J, Sawhney M, Saylan M, Scarborough P, Schmidt J, Schneider I, Schöttker B, Schwebel D, Scott J, Seedat S, Sepanlou S, Serdar B, Servan-Mori E, Shaddick G, Shahraz S, Levy T, Shangguan S, She J, Sheikhbahaei S, Shibuya K, Shin H, Shinohara Y, Shiri R, Shishani K, Shiue I, Sigfusdottir I, Silberberg D, Simard E, Sindi S, Singh A, Singh G, Singh J, Skirbekk V, Sliwa K, Soljak M, Soneji S, Søreide K, Soshnikov S, Sposato L, Sreeramareddy C, Stapelberg N, Stathopoulou V, Steckling N, Stein D, Stein M, Stephens N, Stöckl H, Straif K, Stroumpoulis K, Sturua L, Sunguya B, Swaminathan S, Swaroop M, Sykes B, Tabb K, Takahashi K, Talongwa R, Tandon N, Tanne D, Tanner M, Tavakkoli M, Te Ao B, Teixeira C, Téllez Rojo M, Terkawi A, Texcalac-Sangrador J, Thackway S, Thomson B, Thorne-Lyman A, Thrift A, Thurston G, Tillmann T, Tobollik M, Tonelli M, Topouzis F, Towbin J, Toyoshima H, Traebert J, Tran B, Trasande L, Trillini M, Trujillo U, Dimbuene Z, Tsilimbaris M, Tuzcu E, Uchendu U, Ukwaja K, Uzun S, van de Vijver S, Van Dingenen R, van Gool C, van Os J, Varakin Y, Vasankari T, Vasconcelos A, Vavilala M, Veerman L, Velasquez-Melendez G, Venketasubramanian N, Vijayakumar L, Villalpando S, Violante F, Vlassov V, Vollset S, Wagner G, Waller S, Wallin M, Wan X, Wang H, Wang J, Wang L, Wang W, Wang Y, Warouw T, Watts C, Weichenthal S, Weiderpass E, Weintraub R, Werdecker A, Wessells K, Westerman R, Whiteford H, Wilkinson J, Williams H, Williams T, Woldeyohannes S, Wolfe C, Wong J, Woolf A, Wright J, Wurtz B, Xu G, Yan L, Yang G, Yano Y, Ye P, Yenesew M, Yentür G, Yip P, Yonemoto N, Yoon S, Younis M, Younoussi Z, Yu C, Zaki M, Zhao Y, Zheng Y, Zhou M, Zhu J, Zhu S, Zou X, Zunt J, Lopez A, Vos T and Murray C (2015) Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013, The Lancet, 10.1016/S0140-6736(15)00128-2, 386:10010, (2287-2323), Online publication date: 1-Dec-2015. Pleil J, Sobus J, Stiegel M, Hu D, Oliver K, Olenick C, Strynar M, Clark M, Madden M and Funk W (2014) Estimating Common Parameters of Lognormally Distributed Environmental and Biomonitoring Data: Harmonizing Disparate Statistics from Publications, Journal of Toxicology and Environmental Health, Part B, 10.1080/10937404.2014.956854, 17:6, (341-368), Online publication date: 18-Aug-2014. Jary H, Simpson H, Havens D, Manda G, Pope D, Bruce N, Mortimer K and Larcombe A (2016) Household Air Pollution and Acute Lower Respiratory Infections in Adults: A Systematic Review, PLOS ONE, 10.1371/journal.pone.0167656, 11:12, (e0167656) Vol. 122, No. 4 April 2014Metrics About Article Metrics Publication History Originally published1 April 2014Published in print1 April 2014 Financial disclosuresPDF download License information EHP is an open-access journal published with support from the National Institute of Environmental Health Sciences, National Institutes of Health. All content is public domain unless otherwise noted. Note to readers with disabilities EHP strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in EHP articles may not conform to 508 standards due to the complexity of the information being presented. If you need assistance accessing journal content, please contact [email protected]. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Referência(s)