Revisão Acesso aberto Revisado por pares

Calcium Dysregulation and Homeostasis of Neural Calcium in the Molecular Mechanisms of Neurodegenerative Diseases Provide Multiple Targets for Neuroprotection

2010; Mary Ann Liebert, Inc.; Volume: 14; Issue: 7 Linguagem: Inglês

10.1089/ars.2010.3359

ISSN

1557-7716

Autores

Gregor Zündorf, Georg Reiser,

Tópico(s)

Ion channel regulation and function

Resumo

The intracellular free calcium concentration subserves complex signaling roles in brain. Calcium cations (Ca2+) regulate neuronal plasticity underlying learning and memory and neuronal survival. Homo- and heterocellular control of Ca2+ homeostasis supports brain physiology maintaining neural integrity. Ca2+ fluxes across the plasma membrane and between intracellular organelles and compartments integrate diverse cellular functions. A vast array of checkpoints controls Ca2+, like G protein-coupled receptors, ion channels, Ca2+ binding proteins, transcriptional networks, and ion exchangers, in both the plasma membrane and the membranes of mitochondria and endoplasmic reticulum. Interactions between Ca2+ and reactive oxygen species signaling coordinate signaling, which can be either beneficial or detrimental. In neurodegenerative disorders, cellular Ca2+-regulating systems are compromised. Oxidative stress, perturbed energy metabolism, and alterations of disease-related proteins result in Ca2+-dependent synaptic dysfunction, impaired plasticity, and neuronal demise. We review Ca2+ control processes relevant for physiological and pathophysiological conditions in brain tissue. Dysregulation of Ca2+ is decisive for brain cell death and degeneration after ischemic stroke, long-term neurodegeneration in Alzheimer's disease, Parkinson's disease, Huntington's disease, inflammatory processes, such as in multiple sclerosis, epileptic sclerosis, and leucodystrophies. Understanding the underlying molecular processes is of critical importance for the development of novel therapeutic strategies to prevent neurodegeneration and confer neuroprotection. Antioxid. Redox Signal. 14, 1275–1288.

Referência(s)