CdTe Quantum Dots Obtained by Using Colloidal Self-Assemblies as Templates
1999; Volume: 11; Issue: 3 Linguagem: Inglês
10.1002/(sici)1521-4095(199903)11
ISSN1521-4095
AutoresDorothe Ingert, Nicholas Feltin, Laurent Lévy, Pierre Gouzerh, Marie‐Paule Pileni,
Tópico(s)Chalcogenide Semiconductor Thin Films
ResumoAdvanced MaterialsVolume 11, Issue 3 p. 220-223 Communication CdTe Quantum Dots Obtained by Using Colloidal Self-Assemblies as Templates Dorothe Ingert, Dorothe Ingert Laboratoire Structure et Réactivité des Systèmes Interfaciaux, URA CNRS 1662, Université Pierre et Marie Curie (Paris VI), BP 52, 4 Place Jussieu, F-75231 Paris Cedex 05 (France),Search for more papers by this authorNicholas Feltin, Nicholas Feltin Laboratoire Structure et Réactivité des Systèmes Interfaciaux, URA CNRS 1662, Université Pierre et Marie Curie (Paris VI), BP 52, 4 Place Jussieu, F-75231 Paris Cedex 05 (France),Search for more papers by this authorLaurent Levy, Laurent Levy Laboratoire Structure et Réactivité des Systèmes Interfaciaux, URA CNRS 1662, Université Pierre et Marie Curie (Paris VI), BP 52, 4 Place Jussieu, F-75231 Paris Cedex 05 (France),Search for more papers by this authorPierre Gouzerh, Pierre Gouzerh Laboratoire Structure et Réactivité des Systèmes Interfaciaux, URA CNRS 1662, Université Pierre et Marie Curie (Paris VI), BP 52, 4 Place Jussieu, F-75231 Paris Cedex 05 (France),Search for more papers by this authorMarie-Paule Pileni, Marie-Paule PileniSearch for more papers by this author Dorothe Ingert, Dorothe Ingert Laboratoire Structure et Réactivité des Systèmes Interfaciaux, URA CNRS 1662, Université Pierre et Marie Curie (Paris VI), BP 52, 4 Place Jussieu, F-75231 Paris Cedex 05 (France),Search for more papers by this authorNicholas Feltin, Nicholas Feltin Laboratoire Structure et Réactivité des Systèmes Interfaciaux, URA CNRS 1662, Université Pierre et Marie Curie (Paris VI), BP 52, 4 Place Jussieu, F-75231 Paris Cedex 05 (France),Search for more papers by this authorLaurent Levy, Laurent Levy Laboratoire Structure et Réactivité des Systèmes Interfaciaux, URA CNRS 1662, Université Pierre et Marie Curie (Paris VI), BP 52, 4 Place Jussieu, F-75231 Paris Cedex 05 (France),Search for more papers by this authorPierre Gouzerh, Pierre Gouzerh Laboratoire Structure et Réactivité des Systèmes Interfaciaux, URA CNRS 1662, Université Pierre et Marie Curie (Paris VI), BP 52, 4 Place Jussieu, F-75231 Paris Cedex 05 (France),Search for more papers by this authorMarie-Paule Pileni, Marie-Paule PileniSearch for more papers by this author First published: 08 April 1999 https://doi.org/10.1002/(SICI)1521-4095(199903)11:3 3.0.CO;2-VCitations: 55AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Communication: Quantum dots are of interest because of their unique size-dependent electronic properties. In particular, CdTe has attracted special attention because of its large exciton Bohr diameter. In this communication two new room-temperature, soft-chemical procedures are described for the preparation of CdTe quantum dots. The size and photoluminescence properties of the particles were also investigated, the two preparations being found to give particles with different optical properties, even when the particles are the same size. References 1 L. E. Brus, J. Chem. Phys. 1993, 79, 5566. 10.1063/1.445676 Web of Science®Google Scholar 2 R. Rossetti, J. L. Ellison, J. M. Bigson, L. E. Brus, J. Chem. Phys. 1984, 80, 4464. 10.1063/1.447228 CASWeb of Science®Google Scholar 3 A. J. Nozik, F. Williams, M. T. Nenadocic, T. Rajh, O. I. Micic, J. Phys. Chem. 1985, 89, 397. 10.1021/j100249a004 Web of Science®Google Scholar 4 C. Petit, M. P. Pileni, J. Phys. Chem. 1988, 92, 2282. 10.1021/j100319a037 CASWeb of Science®Google Scholar 5 Y. Kayanuma, Phys. Rev. B 1988, 38, 9797. 10.1103/PhysRevB.38.9797 CASWeb of Science®Google Scholar 6 P. E. Lippens, M. Lannoo, Phys. Rev. B 1989, 39, 10 935. 10.1103/PhysRevB.39.10935 Web of Science®Google Scholar 7 C. Petit, P. Lixon, M. P. Pileni, J. Phys. Chem. 1990, 94, 1598. 10.1021/j100367a069 CASWeb of Science®Google Scholar 8 Y. Z. Hu, M. Lindberg, S. W. Koch, Phys. Rev. B 1990, 42, 1713. 10.1103/PhysRevB.42.1713 CASWeb of Science®Google Scholar 9 Y. Wang, N. Herron, Phys. Rev. B 1990, 41, 6079. 10.1103/PhysRevB.41.6079 Web of Science®Google Scholar 10 M. G. Bawendi, M. L. Steigerwald, L. E. Brus, Annu. Rev. Phys. Chem. 1990, 41, 477. 10.1146/annurev.pc.41.100190.002401 CASWeb of Science®Google Scholar 11 Y. Wang, N. J. Herron, J. Phys. Chem. 1991, 95, 525. 10.1021/j100155a009 CASWeb of Science®Google Scholar 12 M. V. Rama Krishna, R. A. Friesner, J. Chem. Phys. 1991, 95, 8309. 10.1063/1.461258 Web of Science®Google Scholar 13 J. Nosaka, J. Phys. Chem. 1991, 95, 5054. 10.1021/j100166a028 CASWeb of Science®Google Scholar 14 M. P. Pileni, L. Motte, C. Petit, Chem. Mater. 1992, 4, 338. 10.1021/cm00020a021 CASWeb of Science®Google Scholar 15 L. Motte, C. Petit, L. Boulanger, P. Lixon, M. P. Pileni, Langmuir 1992, 8, 1049. 10.1021/la00040a006 CASWeb of Science®Google Scholar 16 Y. Wang, N. Herron, K. Moller, T. Bein, Solid State Commun. 1991, 77, 33. 10.1016/0038-1098(91)90421-Q CASWeb of Science®Google Scholar 17 B. G. Potter, H. Simmons., J. Appl. Phys. 1990, 68, 1218. 10.1063/1.346720 CASWeb of Science®Google Scholar 18 B. G. Potter, H. Simmons, Phys. Rev. B 1991, 43, 2234. 10.1103/PhysRevB.43.2234 CASWeb of Science®Google Scholar 19 B. G. Potter, H. Simmons, P. Kumar, C. J. Stanton, J. Appl. Phys. 1994, 75, 8039. 10.1063/1.356544 CASWeb of Science®Google Scholar 20 B. G. Potter, H. Simmons, Solid State Commun. 1996, 98, 717. 10.1016/0038-1098(96)00108-1 Web of Science®Google Scholar 21 C. R. M. Oliveira, A. M. Paula, F. O. Plentz Filho, J. A. Medeiros Neto, L. C. Barbosa, O. L. Alves, E. A. Menezes, J. M. M. Rios, H. L. Fragnito, C. H. Brito Cruz, C. L. Cesar, Appl. Phys. Lett. 1995, 66, 439. 10.1063/1.114049 Web of Science®Google Scholar 22 A. M. Paula, L. C. Barbosa, C. H. B. Cruz, O. L. Alves, J. A. Sanjurjo, C. L. Cesar, Appl. Phys. Lett. 1996, 69, 357. 10.1063/1.118059 Web of Science®Google Scholar 23 L. C. Barbosa, V. C. S. Reynoso, A. M. Paula, C. R. M. Oliveira, O. L. Alves, A. F. Craievich, R. E. Marotti, C. H. Brito Cruz, C. L. Cesar, J. Non-Cryst. Solids 1997, 219, 205. 10.1016/S0022-3093(97)00330-X CASWeb of Science®Google Scholar 24 Y. Msumoto, K. Sonobe, Phys. Rev. B 1997, 56, 9734. 10.1103/PhysRevB.56.9734 Web of Science®Google Scholar 25 A. F. Craievich, O. L. Alves, L. C. Barbosa, Rev. Sci. Instrum. 1995, 66, 1338. 10.1063/1.1146472 CASWeb of Science®Google Scholar 26 K. T. Higa, D. C. Harris, Organometallics 1989, 8, 1674. 10.1021/om00109a016 CASWeb of Science®Google Scholar 27 A JEOL (100 kV) Model JEM 100CX II electron microscope was used for transmission electron microscopy (TEM) and electron diffraction. The mean diameter, Dm, and the standard deviation, σm, were derived from the values measured for 500 particles. Google Scholar 28 M. P. Pileni, Langmuir 1997, 13, 3266. 10.1021/la960319q CASWeb of Science®Google Scholar 29 K. Zanio, Semiconductors and Semimetals, Vol. 13, Academic, New York 1978. Google Scholar 30 Energy dispersive spectrometry (EdS) measurements were obtained by a Link AN 10,000. Google Scholar 31 Optical absorption spectra were obtained with Cary(1E) and HP 8452A UV-Visible spectrophotometers. Google Scholar 32 Photoluminescence spectra were recorded with a Spex fluorolog (1681). An Oxford cryostat with a controller (ITC502) was used to control the sample temperature (77–300 K). Google Scholar 33 Y. Liu, V. C. M. Reynoso, L. C. Barbosa, R. F. C. Rojas, H. L. Fragnito, C. L. Cesar, O. L. Alves, J. Mater. Sci. Lett. 1995, 14, 635. 10.1007/BF00586163 CASWeb of Science®Google Scholar 34 C. Petit, M. P. Pileni, J. Phys. Chem. 1988, 92, 2282. 10.1021/j100319a037 CASWeb of Science®Google Scholar 35 C. Petit, P. Lixon, M. P. Pileni, J. Phys. Chem. 1990, 94, 1598. 10.1021/j100367a069 CASWeb of Science®Google Scholar 36 J. Cizeron, M. P. Pileni, J. Phys. Chem. B 1997, 101, 8887. 10.1021/jp9713571 CASWeb of Science®Google Scholar 37 H. Weller, Angew. Chem. Int. Ed. Engl. 1993, 32, 41. 10.1002/anie.199300411 Web of Science®Google Scholar 38 L. Levy, N. Feltin, D. Ingert, M. P. Pileni, J. Phys. Chem. B 1997, 101, 9153. 10.1021/jp970978r CASWeb of Science®Google Scholar 39 C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 1993, 115, 8706. 10.1021/ja00072a025 CASWeb of Science®Google Scholar 40 B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawendi, J. Phys. Chem. B 1997, 101, 9463. 10.1021/jp971091y CASWeb of Science®Google Scholar 41 A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, L. E. J. Brus, J. Am. Chem. Soc. 1990, 112, 1327. 10.1021/ja00160a005 CASWeb of Science®Google Scholar 42 Y. P. Varshni, Physica 1967, 34, 149. 10.1016/0031-8914(67)90062-6 CASWeb of Science®Google Scholar 43 C. C. Kim, M. Daraselia, J. W. Garland, S. Sinavananthan, Phys. Rev. B 1997, 56, 4786. 10.1103/PhysRevB.56.4786 CASWeb of Science®Google Scholar 44 Y. Wang, N. Herron, J. Phys. Chem. 1988, 92, 4988. 10.1021/j100328a033 CASWeb of Science®Google Scholar 45 M. P. Pileni, Reverse Micelles, Elsevier, Amsterdam 1989. Google Scholar 46 C. Petit, P. Lixon, M. P. Pileni, Langmuir 1991, 7, 2620. 10.1021/la00059a037 CASWeb of Science®Google Scholar Citing Literature Volume11, Issue3March, 1999Pages 220-223 ReferencesRelatedInformation
Referência(s)