Revisão Revisado por pares

Pathogenesis of systemic lupus erythematosus (SLE)

2001; Wiley; Volume: 31; Issue: 5 Linguagem: Inglês

10.1046/j.1365-2222.2001.01147.x

ISSN

1365-2222

Autores

Michael G. Robson, Mark Walport,

Tópico(s)

T-cell and B-cell Immunology

Resumo

Clinical & Experimental AllergyVolume 31, Issue 5 p. 678-685 Pathogenesis of systemic lupus erythematosus (SLE) Michael G. Robson, Michael G. Robson Rheumatology Section, Division of Medicine, Imperial College of Science, Technology and Medicine, Hammersmith Campus, Du Cane Road, London, UK.Search for more papers by this authorMark J. Walport, Mark J. Walport Rheumatology Section, Division of Medicine, Imperial College of Science, Technology and Medicine, Hammersmith Campus, Du Cane Road, London, UK.Search for more papers by this author Michael G. Robson, Michael G. Robson Rheumatology Section, Division of Medicine, Imperial College of Science, Technology and Medicine, Hammersmith Campus, Du Cane Road, London, UK.Search for more papers by this authorMark J. Walport, Mark J. Walport Rheumatology Section, Division of Medicine, Imperial College of Science, Technology and Medicine, Hammersmith Campus, Du Cane Road, London, UK.Search for more papers by this author First published: 12 January 2002 https://doi.org/10.1046/j.1365-2222.2001.01147.xCitations: 32 Dr M. J. Walport, Rheumatology Section, Division of Medicine, Imperial College of Science, Technology and Medicine, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK, E-mail: [email protected] Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Lahita RG. The clinical presentation of systemic lupus erythematosus. In: RG Lahita, ed. Systemic Lupus Erythematosus. San Diego: Academic press, 1999: p. 325–36. Google Scholar 2 Fritzler MJ & Andrade L. Antibodies to nonhistone antigens in systemic lupus erythematosus. In: RG Lahita, ed. Systemic Lupus Erytematosus. San Diego: Academic press, 1999: p. 247–68. Google Scholar 3 Shapiro S & Long M. Hematology: coagulation problems. In: RG Lahita, ed. Systemic Lupus Erythematosus. San Diego: Academic press, 1999: p. 871–86. Google Scholar 4 Uwatoko S & Mannik M. Low-molecular weight C1q-binding immunoglobulin G in patients with systemic lupus erythematosus consists of autoantibodies to the collagen- like region of C1q. J Clin Invest 1988; 82: 816–24. 10.1172/JCI113684 CASPubMedWeb of Science®Google Scholar 5 Siegert C, Daha M, Westedt ML, Van Der Voort E, Breedveld F. IgG autoantibodies against C1q are correlated with nephritis, hypocomplementemia, and dsDNA antibodies in systemic lupus erythematosus. J Rheumatol 1991; 18: 230–4. CASPubMedWeb of Science®Google Scholar 6 Deapen D, Escalante A, Weinrib L et al. A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis Rheum 1992; 35: 311–8. 10.1002/art.1780350310 CASPubMedWeb of Science®Google Scholar 7 Vyse TJ & Kotzin BL. Genetic susceptibility to systemic lupus erythematosus. Annu Rev Immunol 1998; 16: 261–92. 10.1146/annurev.immunol.16.1.261 CASPubMedWeb of Science®Google Scholar 8 Mohan C, Morel L, Yang P et al. Genetic dissection of lupus pathogenesis: a recipe for nephrophilic autoantibodies. J Clin Invest 1999; 103: 1685–95. 10.1172/JCI5827 CASPubMedWeb of Science®Google Scholar 9 Pickering MC, Botto M, Taylor PR, Lachmann PJ, Walport MJ. Systemic lupus erythematosus, complement deficiency and apoptosis. Adv Immunol 2000; 76: 227–324 . 10.1016/S0065-2776(01)76021-X CASPubMedWeb of Science®Google Scholar 10 Takahashi T, Tanaka M, Brannan CI et al. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 1994; 76: 969–76. 10.1016/0092-8674(94)90375-1 CASPubMedWeb of Science®Google Scholar 11 Izui S, Kelley VE, Masuda K, Yoshida H, Roths JB, Murphy ED. Induction of various autoantibodies by mutant gene lpr in several strains of mice. J Immunol 1984; 133: 227–33. CASPubMedWeb of Science®Google Scholar 12 Lynch DH, Watson ML, Alderson MR et al. The mouse Fas-ligand gene is mutated in gld mice and is part of a TNF family gene cluster. Immunity 1994; 1: 131–6. 10.1016/1074-7613(94)90106-6 CASPubMedWeb of Science®Google Scholar 13 Fisher GH, Rosenberg FJ, Straus SE et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 1995; 81: 935–46. 10.1016/0092-8674(95)90013-6 CASPubMedWeb of Science®Google Scholar 14 Rieux-Laucat F, Le Deist F, Hivroz C et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 1995; 268: 1347–9. 10.1126/science.7539157 CASPubMedWeb of Science®Google Scholar 15 Salmon JE, Millard S, Schachter LA et al. Fc gamma RIIA alleles are heritable risk factors for lupus nephritis in African Americans. J Clin Invest 1996; 97: 1348–54. 10.1172/JCI118552 CASPubMedWeb of Science®Google Scholar 16 Koene HR, Kleijer M, Swaak AJ et al. The Fc gamma RIIIA-158F allele is a risk factor for systemic lupus erythematosus. Arthritis Rheum 1998; 41: 1813–8. 10.1002/1529-0131(199810)41:10 3.0.CO;2-6 CASPubMedWeb of Science®Google Scholar 17 Risch N. Searching for genes in complex diseases: lessons from systemic lupus erythematosus. J Clin Invest 2000; 105: 1503–6. 10.1172/JCI10266 CASPubMedWeb of Science®Google Scholar 18 Greenwood BM. Autoimmune disease and parasitic infections in Nigerians. Lancet 1968; 2: 380–2. 10.1016/S0140-6736(68)90595-3 CASPubMedWeb of Science®Google Scholar 19 Fritzler MJ & Tan EM. Antibodies to histones in drug-induced and idiopathic lupus erythematosus. J Clin Invest 1978; 62: 560–7. 10.1172/JCI109161 CASPubMedWeb of Science®Google Scholar 20 Satoh M, Kumar A, Kanwar YS, Reeves WH. Anti-nuclear antibody production and immune-complex glomerulonephritis in BALB/c mice treated with pristane. Proc Natl Acad Sci USA 1995; 92: 10934–8. 10.1073/pnas.92.24.10934 CASPubMedWeb of Science®Google Scholar 21 Hang L, Slack JH, Amundson C, Izui S, Theofilopoulos AN, Dixon FJ. Induction of murine autoimmune disease by chronic polyclonal B cell activation. J Exp Med 1983; 157: 874–83. 10.1084/jem.157.3.874 PubMedWeb of Science®Google Scholar 22 Bardana Jr EJ, Malinow MR, Houghton DC et al. Diet-induced systemic lupus erythematosus (SLE) in primates. Am J Kidney Dis 1982; 1: 345–52. 10.1016/S0272-6386(82)80005-X CASPubMedWeb of Science®Google Scholar 23 Malinow MR, Bardana Jr EJ, Pirofsky B, Craig S, McLaughlin P. Systemic lupus erythematosus–like syndrome in monkeys fed alfalfa sprouts: role of a nonprotein amino acid. Science 1982; 216: 415–7. 10.1126/science.7071589 CASPubMedWeb of Science®Google Scholar 24 James JA, Kaufman KM, Farris AD, Taylor-Albert E, Lehman TJ, Harley JB. An increased prevalence of Epstein-Barr virus infection in young patients suggests a possible etiology for systemic lupus erythematosus. J Clin Invest 1997; 100: 3019–26. 10.1172/JCI119856 CASPubMedWeb of Science®Google Scholar 25 Lewis RM, Andre-Schwartz J, Harris GS, Hirsch MS, Black PH, Schwartz RS. Canine systemic lupus erythematosus. Transmission of serologic abnormalities by cell-free filtrates. J Clin Invest 1973; 52: 1893–907. 10.1172/JCI107373 PubMedWeb of Science®Google Scholar 26 Beaucher WN, Garman RH, Condemi JJ. Familial lupus erythematosus. Antibodies to DNA in household dogs. N Engl J Med 1977; 296: 982–4. 10.1056/NEJM197704282961707 CASPubMedWeb of Science®Google Scholar 27 Jones DR, Hopkinson ND, Powell RJ. Autoantibodies in pet dogs owned by patients with systemic lupus erythematosus. Lancet 1992; 339: 1378–80. 10.1016/0140-6736(92)91197-G PubMedWeb of Science®Google Scholar 28 Clair D, DeHoratius RJ, Wolfe J, Halliwell R. Autoantibodies in human contacts of SLE dogs. Arthritis Rheum 1980; 23: 251–3. 10.1002/art.1780230219 CASPubMedWeb of Science®Google Scholar 29 Kristensen S, Flagstad A, Jansen H et al. The absence of evidence suggesting that systemic lupus erythematosus is a zoonosis of dogs. Vet Rec 1979; 105: 422–3. 10.1136/vr.105.18.422 PubMedWeb of Science®Google Scholar 30 Reinertsen JL, Kaslow RA, Klippel JH et al. An epidemiologic study of households exposed to canine systemic lupus erythematosus. Arthritis Rheum 1980; 23: 564–8. 10.1002/art.1780230507 PubMedWeb of Science®Google Scholar 31 Morton JI & Siegel BV. Transplantation of autoimmune potential. I. Development of antinuclear antibodies in H-2 histocompatible recipients of bone marrow from New Zealand Black mice. Proc Natl Acad Sci USA 1974; 71: 2162–5. 10.1073/pnas.71.6.2162 PubMedWeb of Science®Google Scholar 32 Shlomchik MJ, Madaio MP, Ni D, Trounstein M, Huszar D. The role of B cells in lpr/lpr-induced autoimmunity. J Exp Med 1994; 180: 1295–306. 10.1084/jem.180.4.1295 CASPubMedWeb of Science®Google Scholar 33 Parker LP, Hahn BH, Osterland CK. Modification of NZB-NZW F1 autoimmune disease by development of tolerance to DNA. J Immunol 1974; 113: 292–7. CASPubMedWeb of Science®Google Scholar 34 Radic MZ & Weigert M. Genetic and structural evidence for antigen selection of anti-DNA antibodies. Annu Rev Immunol 1994; 12: 487–520. 10.1146/annurev.iy.12.040194.002415 CASPubMedWeb of Science®Google Scholar 35 Wofsy D & Seaman WE. Successful treatment of autoimmunity in NZB/NZW F1 mice with monoclonal antibody to L3T4. J Exp Med 1985; 161: 378–91. 10.1084/jem.161.2.378 CASPubMedWeb of Science®Google Scholar 36 Jevnikar AM, Grusby MJ, Glimcher LH. Prevention of nephritis in major histocompatibility complex class II-deficient MRL-lpr mice. J Exp Med 1994; 179: 1137–43. 10.1084/jem.179.4.1137 CASPubMedWeb of Science®Google Scholar 37 Mohan C, Shi Y, Laman JD, Datta SK. Interaction between CD40 and its ligand gp39 in the development of murine lupus nephritis. J Immunol 1995; 154: 1470–80. 10.4049/jimmunol.154.3.1470 CASPubMedWeb of Science®Google Scholar 38 Finck BK, Linsley PS, Wofsy D. Treatment of murine lupus with CTLA4Ig. Science 1994; 265: 1225–7. 10.1126/science.7520604 CASPubMedWeb of Science®Google Scholar 39 Daikh DI, Finck BK, Linsley PS, Hollenbaugh D, Wofsy D. Long-term inhibition of murine lupus by brief simultaneous blockade of the B7/CD28 and CD40/gp39 costimulation pathways. J Immunol 1997; 159: 3104–8. 10.4049/jimmunol.159.7.3104 CASPubMedWeb of Science®Google Scholar 40 Lu L, Kaliyaperumal A, Boumpas DT, Datta SK. Major peptide autoepitopes for nucleosome-specific T cells of human lupus. J Clin Invest 1999; 104: 345–55. 10.1172/JCI6801 CASPubMedWeb of Science®Google Scholar 41 Kaliyaperumal A, Michaels MA, Datta SK. Antigen-specific therapy of murine lupus nephritis using nucleosomal peptides: tolerance spreading impairs pathogenic function of autoimmune T and B cells. J Immunol 1999; 162: 5775–83. 10.4049/jimmunol.162.10.5775 CASPubMedWeb of Science®Google Scholar 42 Mohan C, Adams S, Stanik V, Datta SK. Nucleosome: a major immunogen for pathogenic autoantibody-inducing T cells of lupus. J Exp Med 1993; 177: 1367–81. 10.1084/jem.177.5.1367 CASPubMedWeb of Science®Google Scholar 43 Shi Y, Kaliyaperumal A, Lu L et al. Promiscuous presentation and recognition of nucleosomal autoepitopes in lupus: role of autoimmune T cell receptor alpha chain. J Exp Med 1998; 187: 367–78. 10.1084/jem.187.3.367 CASPubMedWeb of Science®Google Scholar 44 Kaliyaperumal A, Mohan C, Wu W, Datta SK. Nucleosomal peptide epitopes for nephritis-inducing T helper cells of murine lupus. J Exp Med 1996; 183: 2459–69. 10.1084/jem.183.6.2459 CASPubMedWeb of Science®Google Scholar 45 Ebling FM, Tsao BP, Singh RR, Sercarz E, Hahn BH. A peptide derived from an autoantibody can stimulate T cells in the (NZB x NZW) F1 mouse model of systemic lupus erythematosus. Arthritis Rheum 1993; 36: 355–64. 10.1002/art.1780360311 CASPubMedWeb of Science®Google Scholar 46 Singh RR, Kumar V, Ebling FM et al. T cell determinants from autoantibodies to DNA can upregulate autoimmunity in murine systemic lupus erythematosus. J Exp Med 1995; 181: 2017–27. 10.1084/jem.181.6.2017 CASPubMedWeb of Science®Google Scholar 47 Singh RR, Ebling FM, Sercarz EE, Hahn BH. Immune tolerance to autoantibody-derived peptides delays development of autoimmunity in murine lupus. J Clin Invest 1995; 96: 2990–6. 10.1172/JCI118371 CASPubMedWeb of Science®Google Scholar 48 Klinman DM. Polyclonal B cell activation in lupus-prone mice precedes and predicts the development of autoimmune disease. J Clin Invest 1990; 86: 1249–54. 10.1172/JCI114831 CASPubMedWeb of Science®Google Scholar 49 Hibbs ML, Tarlinton DM, Armes J et al. Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell 1995; 83: 301–11. 10.1016/0092-8674(95)90171-X CASPubMedWeb of Science®Google Scholar 50 O'Keefe TL, Williams GT, Batista FD, Neuberger MS. Deficiency in CD22, a B cell-specific inhibitory receptor, is sufficient to predispose to development of high affinity autoantibodies. J Exp Med 1999; 189: 1307–13. 10.1084/jem.189.8.1307 CASPubMedWeb of Science®Google Scholar 51 Yu CC, Tsui HW, Ngan BY, Shulman MJ, Wu GE, Tsui FW. B and T cells are not required for the viable motheaten phenotype. J Exp Med 1996; 183: 371–80. 10.1084/jem.183.2.371 CASPubMedWeb of Science®Google Scholar 52 Bolland S & Ravetch JV. Spontaneous autoimmune disease in Fc (gamma) RIIB-deficient mice results from strain-specific epistasis. Immunity 2000; 13: 277–85[MEDLINE record in process]. 10.1016/S1074-7613(00)00027-3 CASPubMedWeb of Science®Google Scholar 53 Cornall RJ, Cyster JG, Hibbs ML et al. Polygenic autoimmune traits: Lyn, CD22, and SHP-1 are limiting elements of a biochemical pathway regulating BCR signaling and selection. Immunity 1998; 8: 497–508. 10.1016/S1074-7613(00)80554-3 CASPubMedWeb of Science®Google Scholar 54 Di Cristofano A, Kotsi P, Peng YF, Cordon-Cardo C, Elkon KB, Pandolfi PP. Impaired Fas response and autoimmunity in Pten+/- mice. Science 1999; 285: 2122–5.DOI: 10.1126/science.285.5436.2122 10.1126/science.285.5436.2122 CASPubMedWeb of Science®Google Scholar 55 Balomenos D, Martin-Caballero J, Garcia MI et al. The cell cycle inhibitor p21 controls T-cell proliferation and sex- linked lupus development. Nat Med 2000; 6: 171–6.DOI: 10.1038/72272 10.1038/72272 CASPubMedWeb of Science®Google Scholar 56 Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 1999; 11: 141–51. 10.1016/S1074-7613(00)80089-8 CASPubMedWeb of Science®Google Scholar 57 Portanova JP, Ebling FM, Hammond WS, Hahn BH, Kotzin BL. Allogeneic MHC antigen requirements for lupus-like autoantibody production and nephritis in murine graft-vs-host disease. J Immunol 1988; 141: 3370–6. PubMedWeb of Science®Google Scholar 58 Portanova JP, Claman HN, Kotzin BL. Autoimmunization in murine graft-vs-host disease. I. Selective production of antibodies to histones and DNA. J Immunol 1985; 135: 3850–6. CASPubMedWeb of Science®Google Scholar 59 Gleichmann E, Van Elven EH, Van der Veen JP. A systemic lupus erythematosus (SLE) -like disease in mice induced by abnormal T-B cell cooperation. Preferential formation of autoantibodies characteristic of SLE. Eur J Immunol 1982; 12: 152–9. 10.1002/eji.1830120210 CASPubMedWeb of Science®Google Scholar 60 Lachmann P & Walport M. Deficiency of the effector mechanisms of the immune response and autoimmunity. In: J Whelan, ed. Ciba Foundation Symposium 129: Autoimmunity and Autoimmune Diseases. Chichester: Wiley, 1987: p. 149– 71. 10.1002/9780470513484.ch11 Web of Science®Google Scholar 61 Savill J, Fadok V, Henson P, Haslett C. Phagocyte recognition of cells undergoing apoptosis. Immunol Today 1993; 14: 131–6. 10.1016/0167-5699(93)90215-7 CASPubMedWeb of Science®Google Scholar 62 Casciola-Rosen LA, Anhalt G, Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med 1994; 179: 1317–30. 10.1084/jem.179.4.1317 CASPubMedWeb of Science®Google Scholar 63 Korb LC & Ahearn JM. C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited. J Immunol 1997; 158: 4525–8. 10.4049/jimmunol.158.10.4525 CASPubMedWeb of Science®Google Scholar 64 Mevorach D, Zhou JL, Song X, Elkon KB. Systemic exposure to irradiated apoptotic cells induces autoantibody production. J Exp Med 1998; 188: 387–92. 10.1084/jem.188.2.387 CASPubMedWeb of Science®Google Scholar 65 Botto M, Dell'Agnola C, Bygrave AE et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet 1998; 19: 56–9. 10.1038/ng0598-56 CASPubMedWeb of Science®Google Scholar 66 Taylor PR, Carugati A, Fadock VA et al. A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells. J Exp Med 2000; 192: 359–66. 10.1084/jem.192.3.359 CASPubMedWeb of Science®Google Scholar 67 Walport MJ. Lupus, DNase and defective disposal of cellular debris. Nat Genet 2000; 25: 135–6.DOI: 10.1038/75963 10.1038/75963 CASPubMedWeb of Science®Google Scholar 68 Bickerstaff MC, Botto M, Hutchinson WL et al. Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity [see comments]. Nat Med 1999; 5: 694–7.DOI: 10.1038/9544 10.1038/9544 CASPubMedWeb of Science®Google Scholar 69 Napirei M, Karsunky H, Zevnik B, Stephan H, Mannherz HG, Moroy T. Features of systemic lupus erythematosus in Dnase1-deficient mice. Nat Genet 2000; 25: 177–81.DOI: 10.1038/76032 10.1038/76032 CASPubMedWeb of Science®Google Scholar 70 Ehrenstein MR, Cook HT, Neuberger MS. Deficiency in serum immunoglobulin (Ig) M predisposes to development of IgG autoantibodies. J Exp Med 2000; 191: 1253–8. 10.1084/jem.191.7.1253 CASPubMedWeb of Science®Google Scholar 71 Boes M, Schmidt T, Linkemann K, Beaudette BC, Marshak-Rothstein A, Chen J. Accelerated development of IgG autoantibodies and autoimmune disease in the absence of secreted IgM. Proc Natl Acad Sci USA 2000; 97: 1184–9. 10.1073/pnas.97.3.1184 CASPubMedWeb of Science®Google Scholar 72 Koffler D, Schur PH, Kunkel HG. Immunological studies concerning the nephritis of systemic lupus erythematosus. J Exp Med 1967; 126: 607–24. 10.1084/jem.126.4.607 CASPubMedWeb of Science®Google Scholar 73 Pankewycz OG, Migliorini P, Madaio MP. Polyreactive autoantibodies are nephritogenic in murine lupus nephritis. J Immunol 1987; 139: 3287–94. PubMedWeb of Science®Google Scholar 74 Ebling F & Hahn BH. Restricted subpopulations of DNA antibodies in kidneys of mice with systemic lupus. Comparison of antibodies in serum and renal eluates. Arthritis Rheum 1980; 23: 392–403. 10.1002/art.1780230402 CASPubMedWeb of Science®Google Scholar 75 Yoshida H, Yoshida M, Izui S, Lambert PH. Distinct clonotypes of anti-DNA antibodies in mice with lupus nephritis. J Clin Invest 1985; 76: 685–94. 10.1172/JCI112022 CASPubMedWeb of Science®Google Scholar 76 Malide D, Londono I, Russo P, Bendayan M. Ultrastructural localization of DNA in immune deposits of human lupus nephritis. Am J Pathol 1993; 143: 304–11. CASPubMedWeb of Science®Google Scholar 77 Stockl F, Muller S, Batsford S et al. A role for histones and ubiquitin in lupus nephritis? Clin Nephrol 1994; 41: 10–7. PubMedWeb of Science®Google Scholar 78 Morioka T, Woitas R, Fujigaki Y, Batsford SR, Vogt A. Histone mediates glomerular deposition of small size DNA anti-DNA complex. Kidney Int 1994; 45: 991–7. 10.1038/ki.1994.134 CASPubMedWeb of Science®Google Scholar 79 Kramers C, Hylkema MN, Van Bruggen MC et al. Anti-nucleosome antibodies complexed to nucleosomal antigens show anti-DNA reactivity and bind to rat glomerular basement membrane in vivo. J Clin Invest 1994; 94: 568–77. 10.1172/JCI117371 CASPubMedWeb of Science®Google Scholar 80 Van Bruggen MC, Walgreen B, Rijke TP et al. Antigen specificity of anti-nuclear antibodies complexed to nucleosomes determines glomerular basement membrane binding in vivo. Eur J Immunol 1997; 27: 1564–9. 10.1002/eji.1830270636 CASPubMedWeb of Science®Google Scholar 81 Termaat RM, Assmann KJ, Dijkman HB, Van Gompel F, Smeenk RJ, Berden JH. Anti-DNA antibodies can bind to the glomerulus via two distinct mechanisms. Kidney Int 1992; 42: 1363–71. 10.1038/ki.1992.428 PubMedWeb of Science®Google Scholar 82 Clynes R, Dumitru C, Ravetch JV. Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science 1998; 279: 1052–4.DOI: 10.1126/science.279.5353.1052 10.1126/science.279.5353.1052 CASPubMedWeb of Science®Google Scholar 83 Mitchell DA, Taylor PR, Cook HT et al. Cutting edge: C1q protects against the development of glomerulonephritis independently of C3 activation. J Immunol 1999; 162: 5676–9. 10.4049/jimmunol.162.10.5676 CASPubMedWeb of Science®Google Scholar 84 Wang Y, Hu Q, Madri JA, Rollins SA, Chodera A, Matis LA. Amelioration of lupus-like autoimmune disease in NZB/WF1 mice after treatment with a blocking monoclonal antibody specific for complement component C5. Proc Natl Acad Sci USA 1996; 93: 8563–8. 10.1073/pnas.93.16.8563 CASPubMedWeb of Science®Google Scholar Citing Literature Volume31, Issue5May 2001Pages 678-685 ReferencesRelatedInformation

Referência(s)