A Finite Difference Analog of the Neumann Problem for Poisson’s Equation
1965; Society for Industrial and Applied Mathematics; Volume: 2; Issue: 1 Linguagem: Inglês
10.1137/0702001
ISSN2168-3581
AutoresJames H. Bramble, B. E. Hubbard,
Tópico(s)Advanced Numerical Methods in Computational Mathematics
ResumoNext article A Finite Difference Analog of the Neumann Problem for Poisson’s EquationJ. H. Bramble and B. E. HubbardJ. H. Bramble and B. E. Hubbardhttps://doi.org/10.1137/0702001PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] Eduard Batschelet, Über die numerische Auflösung von Ranswertproblemen bei elliptischen partiellen Differentialgleichungen, Z. Angew. Math. Physik, 3 (1952), 165–193 10.1007/BF02008824 MR0060912 (15,747b) 0046.34501 CrossrefGoogle Scholar[2] James H. Bramble, Fourth-order finite difference analogues of the Dirichlet problem for Poisson's equation in three and four dimensions, Math. Comp., 17 (1963), 217–222 MR0160338 (28:3551) 0116.09103 Google Scholar[3] J. H. Bramble and , B. E. Hubbard, On the formulation of finite difference analogues of the Dirichlet problem for Poisson's equation, Numer. Math., 4 (1962), 313–327 10.1007/BF01386325 MR0149672 (26:7157) 0135.18102 CrossrefGoogle Scholar[4] J. H. Bramble and , B. E. Hubbard, A theorem on error estimation for finite difference analogues of the Dirichlet problem for elliptic equations, Contributions to Differential Equations, 2 (1963), 319–340 MR0152134 (27:2114) 0196.50901 Google Scholar[5] J. H. Bramble and , B. E. Hubbard, A priori bounds on the discretization error in the numerical solution of the Dirichlet problem, Contributions to Differential Equations, 2 (1963), 229–252 MR0149673 (26:7158) 0196.50801 Google Scholar[6] J. H. Bramble and , B. E. Hubbard, On a finite difference analogue of an elliptic boundary problem which is neither diagonally dominant nor of non-negative type, J. Math. and Phys., 43 (1964), 117–132 MR0162367 (28:5566) 0126.32305 CrossrefISIGoogle Scholar[7] J. H. Bramble and , B. E. Hubbard, New monotone type approximations for elliptic problems, Math. Comp., 18 (1964), 349–367 0124.33006 CrossrefISIGoogle Scholar[8] J. H. Bramble and , B. E. Hubbard, Approximation of solutions of mixed boundary value problems for Poisson's equation by finite differences, J. Assoc. Comput. Mach., 12 (1965), 114–123 MR0171384 (30:1615) 0125.07305 CrossrefISIGoogle Scholar[9] J. H. Bramble and , B. E. Hubbard, Approximation of derivatives by finite difference methods in elliptic boundary value problems, Contributions to Differential Equations, 3 (1964), 399–410 MR0166935 (29:4208) 0142.12003 Google Scholar[10] R. Courant and , D. Hilbert, Methods of mathematical physics. Vol. II: Partial differential equations, (Vol. II by R. Courant.), Interscience Publishers (a division of John Wiley & Sons), New York-Lon don, 1962xxii+830 MR0140802 (25:4216) 0099.29504 Google Scholar[11] George E. Forsythe and , Wolfgang R. Wasow, Finite-difference methods for partial differential equations, Applied Mathematics Series, John Wiley & Sons Inc., New York, 1960x+444 MR0130124 (23:B3156) 0099.11103 Google Scholar[12] K. O. Friedrichs, A finite difference scheme for the Neumann and the Dirichlet problem, N.Y.O.-9760, 1962 Google Scholar[13] L. Fox, Numerical solution of ordinary and partial differential equations, Based on a Summer School held in Oxford, August-September 1961, Pergamon Press, Oxford, 1962ix+509 MR0146969 (26:4488) 0101.09904 Google Scholar[14] S. Gerschgorin, Fehlerabsehätzung für das Differenzverfahren zur Lösung Partieller Differentialgleichungen, Z. Angew. Math. Mech., 10 (1930), 373–382 56.0467.03 CrossrefGoogle Scholar[15] John H. Giese, On the truncation error in a numerical solution of the Neumann problem for a rectangle, J. Math. Phys., 37 (1958), 169–177 MR0096361 (20:2845) 0081.12605 CrossrefGoogle Scholar[16] L. V. Kantorovich and , V. I. Krylov, Approximate methods of higher analysis, Translated from the 3rd Russian edition by C. D. Benster, Interscience Publishers, Inc., New York, 1958xv+681 MR0106537 (21:5268) 0083.35301 Google Scholar[17] Pentti Laasonen, On the behavior of the solution of the Dirichlet problem at analytic corners, Ann. Acad. Sci. Fenn. Ser. A. I., 1957 (1957), 13– MR0091405 (19,964a) 0103.10501 Google Scholar[18] Pentti Laasonen, On the solution of Poisson's difference equation, J. Assoc. Comput. Mach., 5 (1958), 370–382 MR0121999 (22:12726) 0087.12202 CrossrefISIGoogle Scholar[19] G. Shortley and , R. Weller, The numerical solution of Laplace's equation, Appl. Phys., 9 (1938), 334–348 10.1063/1.1710426 0019.03801 CrossrefGoogle Scholar[20] F. S. Shaw, An Introduction to Relaxation Methods, Dover, New York, 1950 Google Scholar[21] J. L. Synge and , A. Schild, Tensor Calculus, University of Toronto Press, Toronto, 1952 Google Scholar[22] W. Uhlmann, Differenzenverfahren für die 2. und 3. Randwertaufgabe mit krummlinigen Rändern bei $\Delta u(x,y)=r(x,y,u)$, Z. Angew. Math. Mech., 38 (1958), 236–251 MR0093028 (19,1199f) 0081.34301 CrossrefGoogle Scholar[23] Richard S. Varga, Matrix iterative analysis, Prentice-Hall Inc., Englewood Cliffs, N.J., 1962xiii+322 MR0158502 (28:1725) 0133.08602 Google Scholar[24] R. V. Viswanathan, Solution of Poisson's equation by relaxation method—normal gradient specified on curved boundaries, Math. Tables Aids Comput., 11 (1957), 67–78 MR0086396 (19,178e) 0080.11202 CrossrefGoogle Scholar[25] Ye. A. Volkov, On the method of nets for a boundary problem with an oblique and normal derivative, U.S.S.R. Comput. Math. and Math. Phys., 2 (1961), 705–722 0154.17603 Google Scholar Next article FiguresRelatedReferencesCited byDetails On the Derivation of Highest-Order Compact Finite Difference Schemes for the One- and Two-Dimensional Poisson Equation with Dirichlet Boundary ConditionsSean O. Settle, Craig C. Douglas, Imbunm Kim, and Dongwoo Sheen27 August 2013 | SIAM Journal on Numerical Analysis, Vol. 51, No. 4AbstractPDF (268 KB)The Immersed Interface Technique for Parabolic Problems with Mixed Boundary ConditionsFrançois Bouchon and Gunther H. Peichl21 December 2010 | SIAM Journal on Numerical Analysis, Vol. 48, No. 6AbstractPDF (290 KB)Difference Methods for Elliptic Partial Differential Equations with Nonunique SolutionsI. N. Molchanov and E. F. Galba31 July 2006 | SIAM Journal on Numerical Analysis, Vol. 19, No. 3AbstractPDF (1548 KB)$L^\infty $-Multivariate Approximation TheoryMartin H. Schultz14 July 2006 | SIAM Journal on Numerical Analysis, Vol. 6, No. 2AbstractPDF (2018 KB)Maximum Principle Methods for the Discretization Error in the Approximation of the Bergman Harmonic Kernel by Finite Difference MethodsRobert E. Huddleston14 July 2006 | SIAM Journal on Numerical Analysis, Vol. 5, No. 3AbstractPDF (1064 KB) Volume 2, Issue 1| 1965Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis History Submitted:15 November 1963Published online:03 August 2006 InformationCopyright © 1965 © Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/0702001Article page range:pp. 1-14ISSN (print):0887-459XISSN (online):2168-3581Publisher:Society for Industrial and Applied Mathematics
Referência(s)