Artigo Acesso aberto Revisado por pares

Wing dimorphism as an adaptive strategy in water-striders (Gerris)

2009; BioMed Central; Volume: 84; Issue: 1 Linguagem: Inglês

10.1111/j.1601-5223.1976.tb01196.x

ISSN

1601-5223

Autores

Olli Järvinen, Kari Vepsäläinen,

Tópico(s)

Animal Behavior and Reproduction

Resumo

HereditasVolume 84, Issue 1 p. 61-68 Open Access Wing dimorphism as an adaptive strategy in water-striders (Gerris) Olli Järvinen, Corresponding Author Olli Järvinen Department of Genetics, University of Helsinki, Finland2Department of Genetics, University of Helsinki, P. Rautatiekatu 13, SF-00100 Helsinki 10, FinlandSearch for more papers by this authorKari Vepsäläinen, Kari Vepsäläinen Department of Genetics, University of Helsinki, FinlandSearch for more papers by this author Olli Järvinen, Corresponding Author Olli Järvinen Department of Genetics, University of Helsinki, Finland2Department of Genetics, University of Helsinki, P. Rautatiekatu 13, SF-00100 Helsinki 10, FinlandSearch for more papers by this authorKari Vepsäläinen, Kari Vepsäläinen Department of Genetics, University of Helsinki, FinlandSearch for more papers by this author First published: December 1976 https://doi.org/10.1111/j.1601-5223.1976.tb01196.xCitations: 15AboutPDF ToolsExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract Several hypotheses have been suggested to account for the adaptive significance of the different wing morphs in water-striders (Gerris, Heteroptera). Stability and isolation of population sites should favour short-wingedness; increased rates of population extinction should increase the fitness of the long-winged individuals. Further, if the populations are often resource (food) limited, dimorphism may be optimal. Combinations of other selective pressures can also produce local dimorphism, which need not be optimal — dimorphism can result from mixing of individuals from different population sites. The term morphism cycle is coined to express a cyclical change: when a region (comprising a great number of population sites) is initially colonized, long-wingedness is favoured, but short-wingedness becomes more advantageous after the colonization phase. However, if the populations become totally short-winged, they probably face a relatively high risk of extinction, and the cycle may begin anew. The ecological genetics of the Finnish water-striders (nine species) is discussed in connection with the numerous predictions suggested by the original cluster of wing-dimorphism hypotheses. Literature cited Andersen, N. Møller 1973. Seasonal polymorphism and developmental changes in organs of flight and reproduction in bivoltine pondskaters (Hem. Gerridae). Entomol. Scand. 4: 1– 20. Anderson, L. D. 1932. A monograph of the genus Metrobates. Univ. Kansas Sci. Bull. 20: 297– 311. Brinkhurst, R. O. 1959. Alary polymorphism in the Gerroidea (Hemiptera-Heteroptera). J. Animal Ecol. 28: 211– 230. Brinkhurst, R. O. 1966. Population dynamics of the large pond-skater Gerris najas Degeer (Hemiptera-Heteroptera). J. Animal Ecol. 35: 13– 25. Bueno J. R. de la Torre 1917. Life-history and habits of Gerris remigis Say (Hem.). Entomol. News. 28: 201– 208. Callahan, J. R. 1974. Observations on Gerris incognirus and Gerris gillettei (Heteroptera: Gerridae). Proc. Entomol. Soc. Washington 76: 15– 21. Clarke, B. C. 1972. Density-dependent selection. Am. Natur. 106: 1– 13. Eickwort, K. R. 1973. Cannibalism and kin selection in Labidomera clivicollis (Coleoptera: Chrysomelidae). Am. Natur. 107: 452– 453. Essenberg, C. 1915. The habits of the water-strider, Gerris remigis (Orba). J. Animal Behav. 5: 397– 402. Fernando, C. H. and Galbraith, D. 1970. A heavy infestation of gerrids (Hemiptera-Heteroptera) by water mites (Acarina-Limnocharidae). Can. J. Zool. 48: 592– 594. Frost, W. E. and Macan, T. T. 1948. Corixidae (Hemiptera) as food offish. J. Animal Ecol. 17: 174– 179. Gaunitz, D. 1947. Gerris sphagnetorum n. sp. (Heteropt.). Opuscula Entomol. 12: 34. Guthrie, D. M. 1959. Polymorphism in the surface water bugs (Hemipt-Heteropt.: Gerroidea). J. Animal Ecol. 28: 141– 152. Ho, F. K. and Dawson, P. S. 1966. Egg cannibalism by Tribolium larvae. Ecology 47: 318– 322. Hungerford, H. B. 1920. The biology and ecology of aquatic and semiaquatic Hemiptera. Kansas Univ. Sci. Bull. 11: 1– 328. Jamieson, G. S. 1973. Coexistence in Gerris. — Ph.D. Thesis abstract. Univ. British Columbia, Vancouver, B.C., Canada. Järvinen, O. 1976. Migration, extinction, and alary morphism in water-striders (Gerris Fabr.). Ann. Acad. Sci. Fenn. Ser. A IV 2 06: 1– 9. Johnson, C. G. 1969. Migration and Dispersal of Insects by Flight. —Methuen, London. Kennedy, J. S. 1975. Insect dispersal. — In Insects, Science and Society (Ed. D. Pimentel), Academic Press, New York, London, p. 103– 119. Krajewski, S. 1969. Wasserwanzen (Heteroptera) des Flusses Grabia und seines Überschwemmungsgebietes. Bull. Entomol. Pologne 39: 465– 513 (in Polish). Lees, A. D. 1966. The control of polymorphism in aphids. Advan. Insect Physiol. 3: 207– 227. Leth, K.O. 1943. Die Verbreitung der danischen Wasserwanzen. Entomol. Meddel. 23: 399– 419. Levins, R. 1962. Theory of fitness in a heterogeneous environment. I. The fitness set and adaptive function. Am. Natur. 96: 361– 378. Levins, R. 1968. Evolution in Changing Environments. —Princeton Univ. Press, Princeton, New Jersey. Levins, R. 1969. Some demographic and genetic consequences of environmental heterogeneity for biological control. Entomol. Soc. Am. Bull. (Washington) 15: 237– 240. Levins, R. 1970. Extinction, —In Some Mathematical Questions in Biology, Am. Mathem. Soc., p. 75– 107. Lewontin, R. C. 1965. Selection for colonizing ability. —In The Genetics of Colonizing Species (Ed. H. G. Baker and G. L. Stebbins), Academic Press, New York. p. 77– 94. Lindroth, C. H. 1949. Die Fennoskandischen Carabidae. Eine Tiergeographische Studie. III. Allgemeiner Teil. Meddel. Göteborgs Mus. Zool. Avd. 122: 1– 911. Lipa, J. J. 1968. Some observations on flagellate parasites of hemipterans Corimelaena, Euschistus, Gerris, Leptocoris and Oncopeltus in the United States. Acta Protozool. 6: 59– 68. MacArthur. R. H. 1962. Some generalized theorems of natural selection. Proc. Nat. Acad. Sci. 48: 1893– 1897. MacArthur, R. H. 1972. Geographical Ecology. — Harper and Row, New York. Matthey, W. 1974. Contribution a I'ecologie de Gerris remigis Say sur deux etangs de Montagnes Rocheuses. Mitt. Schw. Entomol. Ges. 47: 85– 95. Mertz, D. B. and Robertson, J. R. 1970. Some developmental consequences of handling, egg-eating, and population density for flour beetle larvae. Ecology 51: 989– 998. Mitis, H. von 1937. Dkologie und Larvenentwicklung der mitteleuropaischen Gerris-Arten (Heteroptera). Zool. Jahrb. (Abt. Syst.) 69: 337– 372. Poisson, R. 1924. Contributions a I'etude des Hemipteres aqatiques. Bull. Biol. France Belg. 58: 49– 305. Poisson, R. 1940. Contributions a I'etude des Gerris de la France et de I'Afrique du Nord. Bull. Soc. Sci. Bretagne 17: 140– 173. Riley, C. F. C. 1922. Droughts and cannibalistic responses of the waterstrider, Gerris marginatus Say. Bull. Brooklyn Entomol. Soc. 17: 79– 87. Roff, D. A. 1975. Population stability and the evolution of dispersal in a heterogeneous environment. Oecologiu 19: 217– 237. Vepsäläinen, K. 1971. The role of gradually changing day-length in determination of wing length, alary dimorphism and diapause in a Cerris odontoguster (Zett.) population (Gerridae, Heteroptera) in South Finland. Ann. Acad. Sri. Fenn. Ser. A IV 183: 1– 25. Vepsäläinen, K. 1973. The distribution and habitats ofGerris Fabr. species (Heteroptera, Gerridae) in Finland. Ann. Zool. Fenn. 10: 419– 444. Vepsäläinen, K. 1974a. The life cycles and wing lengths of Finnish Gerris Fabr. species (Heteroptera, Gerridae). Acta Zool. Fenn. 141: 1– 73. Vepsäläinen, K. 1974b. Determination of wing length and diapause in water-striders (Gerris Fabr., Heteroptera). Hereditas 77: 163– 176. Vepsäläinen, K. 1974c. The wing lengths, reproductive stages and habitats of Hungarian Gerris Fabr. species (Heteroptera, Gerridae). Ann. Acad. Sci. Fenn. Ser. A IV 202: 1– 18. Vepsäläinen, K. 1974d. Lengthening of illumination period is a factor in averting diapause. Nature 247: 385– 386. Vepsäläinen, K. and Järvinen. O. 1974. Habitat utilization of Gerris argentatus (Het. Gerridae). Entomol. Scand. 5: 189– 195. Vepsäläinen, K. and Krajewski, S. 1974. The life cycle and alary dimorphism of Gerris lacustris (L.) (Heteroptera. Gerridae) in Poland. Notulae Entomol. 54: 85– 89. Citing Literature Volume84, Issue1December 1976Pages 61-68 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX