Artigo Acesso aberto Produção Nacional Revisado por pares

Ajuste de modelos estocásticos lineares e não-lineares para a descrição do perfil longitudinal de árvores

2007; Sociedade de Investigações Florestais; Volume: 31; Issue: 5 Linguagem: Português

10.1590/s0100-67622007000500008

ISSN

1806-9088

Autores

Leonardo Machado Pires, Natalino Calegário,

Tópico(s)

Tree Root and Stability Studies

Resumo

Os modelos polinomiais são mais difundidos no meio florestal brasileiro na descrição do perfil de árvores devido à sua facilidade de ajuste e precisão. O mesmo não ocorre com os modelos não-lineares, os quais possuem maior dificuldade de ajuste. Dentre os modelos não-lineares clássicos, na descrição do perfil, podem-se citar o de Gompertz, o Logístico e o de Weibull. Portanto, este estudo visou comparar os modelos lineares e não lineares para a descrição do perfil de árvores. As medidas de comparação foram o coeficiente de determinação (R²), o erro-padrão residual (s yx), o coeficiente de determinação corrigido (R²ajustado), o gráfico dos resíduos e a facilidade de ajuste. Os resultados ressaltaram que, dentre os modelos não-lineares, o que obteve melhor desempenho, de forma geral, foi o modelo Logístico, apesar de o modelo de Gompertz ser melhor em termos de erro-padrão residual. Nos modelos lineares, o polinômio proposto por Pires & Calegario foi superior aos demais. Ao comparar os modelos não-lineares com os lineares, o modelo Logístico foi melhor em razão, principalmente, do fato de o comportamento dos dados ser não-linear, à baixa correlação entre os parâmetros e à fácil interpretação deles, facilitando a convergência e o ajuste.

Referência(s)