Artigo Acesso aberto Revisado por pares

Molecular nexopathies: a new paradigm of neurodegenerative disease

2013; Elsevier BV; Volume: 36; Issue: 10 Linguagem: Inglês

10.1016/j.tins.2013.06.007

ISSN

1878-108X

Autores

Jason D. Warren, Jonathan D. Rohrer, Jonathan M. Schott, Nick C. Fox, John Hardy, Martin N. Rossor,

Tópico(s)

Functional Brain Connectivity Studies

Resumo

•How proteinopathies damage brain networks is a key issue in neurodegenerative disease.•Here, we outline a solution based on the concept of 'molecular nexopathies'.•The concept is founded on specific interactions of network and protein properties.•This new paradigm has far-reaching biological and clinical implications. Neural networks provide candidate substrates for the spread of proteinopathies causing neurodegeneration, and emerging data suggest that macroscopic signatures of network disintegration differentiate diseases. However, how do protein abnormalities produce network signatures? The answer may lie with 'molecular nexopathies': specific, coherent conjunctions of pathogenic protein and intrinsic network characteristics that define network signatures of neurodegenerative pathologies. Key features of the paradigm that we propose here include differential intrinsic network vulnerability to propagating protein abnormalities, in part reflecting developmental structural and functional factors; differential vulnerability of neural connection types (e.g., clustered versus distributed connections) to particular pathogenic proteins; and differential impact of molecular effects (e.g., toxic-gain-of-function versus loss-of-function) on gradients of network damage. The paradigm has implications for understanding and predicting neurodegenerative disease biology. Neural networks provide candidate substrates for the spread of proteinopathies causing neurodegeneration, and emerging data suggest that macroscopic signatures of network disintegration differentiate diseases. However, how do protein abnormalities produce network signatures? The answer may lie with 'molecular nexopathies': specific, coherent conjunctions of pathogenic protein and intrinsic network characteristics that define network signatures of neurodegenerative pathologies. Key features of the paradigm that we propose here include differential intrinsic network vulnerability to propagating protein abnormalities, in part reflecting developmental structural and functional factors; differential vulnerability of neural connection types (e.g., clustered versus distributed connections) to particular pathogenic proteins; and differential impact of molecular effects (e.g., toxic-gain-of-function versus loss-of-function) on gradients of network damage. The paradigm has implications for understanding and predicting neurodegenerative disease biology.

Referência(s)