Simultaneous Positron Emission Tomography/Magnetic Resonance Imaging Identifies Sustained Regional Abnormalities in Cardiac Metabolism and Function in Stress-Induced Transient Midventricular Ballooning Syndrome
2012; Lippincott Williams & Wilkins; Volume: 126; Issue: 21 Linguagem: Inglês
10.1161/circulationaha.112.134346
ISSN1524-4539
AutoresTareq Ibrahim, Stephan G. Nekolla, Nicolas Langwieser, Christoph Rischpler, Philipp Groha, Karl‐Ludwig Laugwitz, Markus Schwaiger,
Tópico(s)Electroconvulsive Therapy Studies
ResumoHomeCirculationVol. 126, No. 21Simultaneous Positron Emission Tomography/Magnetic Resonance Imaging Identifies Sustained Regional Abnormalities in Cardiac Metabolism and Function in Stress-Induced Transient Midventricular Ballooning Syndrome Free AccessBrief ReportPDF/EPUBAboutView PDFView EPUBSections ToolsAdd to favoritesDownload citationsTrack citationsPermissionsDownload Articles + Supplements ShareShare onFacebookTwitterLinked InMendeleyReddit Jump toSupplemental MaterialFree AccessBrief ReportPDF/EPUBSimultaneous Positron Emission Tomography/Magnetic Resonance Imaging Identifies Sustained Regional Abnormalities in Cardiac Metabolism and Function in Stress-Induced Transient Midventricular Ballooning SyndromeA Variant of Takotsubo Cardiomyopathy Tareq Ibrahim, MD, Stephan G. Nekolla, PhD, Nicolas Langwieser, MD, Christoph Rischpler, MD, Philipp Groha, MD, Karl-Ludwig Laugwitz, MD and Markus Schwaiger, MD Tareq IbrahimTareq Ibrahim From the Medizinische Klinik, Klinikum rechts der Isar der Technischen Universität München, Germany (T.I., N.L., P.G., K.-L.L.); and the Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Germany (S.G.N., C.R., M.S.). , Stephan G. NekollaStephan G. Nekolla From the Medizinische Klinik, Klinikum rechts der Isar der Technischen Universität München, Germany (T.I., N.L., P.G., K.-L.L.); and the Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Germany (S.G.N., C.R., M.S.). , Nicolas LangwieserNicolas Langwieser From the Medizinische Klinik, Klinikum rechts der Isar der Technischen Universität München, Germany (T.I., N.L., P.G., K.-L.L.); and the Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Germany (S.G.N., C.R., M.S.). , Christoph RischplerChristoph Rischpler From the Medizinische Klinik, Klinikum rechts der Isar der Technischen Universität München, Germany (T.I., N.L., P.G., K.-L.L.); and the Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Germany (S.G.N., C.R., M.S.). , Philipp GrohaPhilipp Groha From the Medizinische Klinik, Klinikum rechts der Isar der Technischen Universität München, Germany (T.I., N.L., P.G., K.-L.L.); and the Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Germany (S.G.N., C.R., M.S.). , Karl-Ludwig LaugwitzKarl-Ludwig Laugwitz From the Medizinische Klinik, Klinikum rechts der Isar der Technischen Universität München, Germany (T.I., N.L., P.G., K.-L.L.); and the Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Germany (S.G.N., C.R., M.S.). and Markus SchwaigerMarkus Schwaiger From the Medizinische Klinik, Klinikum rechts der Isar der Technischen Universität München, Germany (T.I., N.L., P.G., K.-L.L.); and the Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Germany (S.G.N., C.R., M.S.). Originally published20 Nov 2012https://doi.org/10.1161/CIRCULATIONAHA.112.134346Circulation. 2012;126:e324–e326A 70-year-old white woman with a history of hyperlipidemia, hypertension, and former smoking and a family history of premature coronary artery disease presented with acute substernal chest pain. She complained of progressive exertional dyspnea during the preceding weeks and of being under personal stress during this time. Her initial ECG showed ST-segment elevation of a maximum 0.2 mV and a reduced R-wave progression in the anteroseptal leads (V1–3). Her troponin T level was moderately elevated (0.3 ng/mL), with normal creatine kinase (CK) and CK-myocardial band (CK-MB) fraction. Cardiac catheterization was performed and showed angiographically normal epicardial coronary arteries. However, the left ventriculogram demonstrated midventricular dilatation and akinesis with a hypercontractile apex and base compatible with midventricular ballooning syndrome, a variant of Takotsubo cardiomyopathy (TTC) (Figure 1A and 1B and Movie I in the online-only Data Supplement). Transthoracic echocardiographic monitoring during the next couple of days revealed no substantial changes in midventricular akinesis. Six days after the onset of symptoms, the patient underwent a simultaneous positron emission tomography (PET)/magnetic resonance (MR) examination of the heart performed on a whole-body integrated PET/MR scanner (Biograph mMR; Siemens Healthcare, Erlangen, Germany) using F-18 fluorodeoxyglucose (FDG) as a tracer. For PET scanning, the patient was prepared with a high-fat, low-carbohydrate diet the entire day before and a 12-hour fasting period before the examination. On cine-MR imaging, left ventricular midventricular dysfunction was unimproved (Figure 2 and Movie II in the online-only Data Supplement) and delayed-contrast MR imaging did not depict any myocardial hyperenhancement (Figure 3A and 3B). On PET scanning, suppressed FDG uptake within normal myocardium was noted, but a markedly increased glucose metabolism within the dysfunctional midventricular segments was indicated as well (Figure 3C and 3D). Thus, combined PET/MR findings are compatible with stunned but viable myocardium that typically emerge during the acute phase of TTC (Movie III in the online-only Data Supplement). The patient was initiated on an angiotensin-converting enzyme inhibitor and β-blocker medication, and transthoracic echocardiography 8 weeks later confirmed complete normalization of left ventricular function without any regional wall motion abnormalities while the patient was asymptomatic.Download figureDownload PowerPointFigure 1. The left ventriculogram in the right anterior oblique view in diastole (A) and systole (B) demonstrates akinesis of the midventricular segments with hypercontractility of the apical and basal segments during systole compatible with transient midventricular ballooning syndrome.Download figureDownload PowerPointFigure 2. Cine-magnetic resonance imaging in a 4-chamber view during diastole (A) and systole (B) 6 days after admission shows the unimproved midventricular akinesis with a spadelike ballooning during systole and impairment of global left ventricular function (ejection fraction, 46%).Download figureDownload PowerPointFigure 3. Contrast-enhanced cardiovascular magnetic resonance imaging in 2-chamber (A) and 4-chamber (B) orientations revealed no evidence of delayed myocardial hyperenhancement. Fusion overlay of fluorodeoxyglucose–positron emission tomography and magnetic resonance imaging in 2-chamber (C) and 4-chamber (D) orientations demonstrate the suppressed glucose uptake within normal myocardium but a preserved glucose metabolism within the midventricular myocardium that correlates closely with the extent of wall motion disturbance compatible with myocardial stunning typically associated with Takotsubo cardiomyopathy.Transient apical ballooning syndrome, also known as Takotsubo or stress cardiomyopathy, is a reversible condition that occurs predominantly in postmenopausal women and is estimated to represent 1% to 2% of patients presenting with troponin-positive acute coronary syndromes.1 However, about 17% of patients with TTC present with a preserved apical contraction, referred to as atypical or midventricular ballooning syndrome.2 Although the underlying pathophysiology of this cardiomyopathy is not fully elucidated, neurogenic myocardial stunning that is mediated by stress-induced abnormal catecholamine dynamics seems to be the most relevant hypothesis. Cardiovascular MR imaging may provide important functional information helpful in establishing the diagnosis of TTC, and a lack of contrast enhancement in the presence of wall motion abnormality may be interpreted as myocardial stunning, and hence may be a predictor of wall motion recovery.2 Postischemic or stunned myocardium is characterized metabolically by a transient shift from fatty acid metabolism toward increased glucose utilization as a compensatory energy production, and PET scanning has been demonstrated successfully to display delayed regional recovery of both fatty acid and glucose metabolism, also termed ischemic memory.3 A recent study in acute TTC using FDG-PET scanning after glucose load has reported that dysfunctional regions exhibit an altered but reduced glucose metabolism relative to remote myocardium and perfusion that normalized on follow-up imaging after several weeks.4 However, by a targeted suppression of FDG uptake within normal myocardium using a high-fat, low-carbohydrate diet, FDG-PET scanning performed early after symptom onset depicts clearly an accelerated glucose metabolism within the dysfunctional midventricular myocardium as defined by MR imaging. The combined information of integrated PET/MR imaging in this variant of TTC allowed us to delineate neurogenic myocardial stunning. This type of multimodal imaging may provide further insight into the underlying pathophysiology of stress-induced cardiomyopathy.DisclosuresNone.FootnotesThe online-only Data Supplement is available with this article at http://circ.ahajournals.org/lookup/suppl/10.1161/CIRCULATIONAHA.112.134346/-/DC1.Correspondence to Tareq Ibrahim, MD, Medizinische Klinik, Technische Universität München, Ismaningerstrasse 22, 81675 München, Germany. E-mail T.[email protected]tu-muenchen.deReferences1. Akashi YJ, Goldstein DS, Barbaro G, Ueyama T. Takotsubo cardiomyopathy: a new form of acute, reversible heart failure. Circulation. 2008; 118:2754–2762.LinkGoogle Scholar2. Eitel I, von Knobelsdorff-Brenkenhoff F, Bernhardt P, Carbone I, Muellerleile K, Aldrovandi A, Francone M, Desch S, Gutberlet M, Strohm O, Schuler G, Schulz-Menger J, Thiele H, Friedrich MG. Clinical characteristics and cardiovascular magnetic resonance findings in stress (Takotsubo) cardiomyopathy. JAMA. 2011; 306:277–286.MedlineGoogle Scholar3. Schwaiger M, Schelbert HR, Ellison D, Hansen H, Yeatman L, Vinten-Johansen J, Selin C, Barrio J, Phelps ME. Sustained regional abnormalities in cardiac metabolism after transient ischemia in the chronic dog model. J Am Coll Cardiol. 1985; 6:336–347.CrossrefMedlineGoogle Scholar4. Obunai K, Misra D, Van Tosh A, Bergmann SR. Metabolic evidence of myocardial stunning in Takotsubo cardiomyopathy: a positron emission tomography study. J Nucl Cardiol. 2005; 12:742–744.CrossrefMedlineGoogle Scholar Previous Back to top Next FiguresReferencesRelatedDetailsCited By Wang T, Xiong T, Yang Y, Zuo B, Chen X and Wang D (2022) Metabolic remodeling in takotsubo syndrome, Frontiers in Cardiovascular Medicine, 10.3389/fcvm.2022.1060070, 9 Nayar J, John K, Philip A, George L, George A, Lal A and Mishra A (2022) A Review of Nuclear Imaging in Takotsubo Cardiomyopathy, Life, 10.3390/life12101476, 12:10, (1476) Fiserova I, Trinh M, Elkalaf M, Vacek L, Heide M, Martinkova S, Bechynska K, Kosek V, Hajslova J, Fiser O, Tousek P and Polak J (2022) Isoprenaline modified the lipidomic profile and reduced β-oxidation in HL-1 cardiomyocytes: In vitro model of takotsubo syndrome, Frontiers in Cardiovascular Medicine, 10.3389/fcvm.2022.917989, 9 Lüscher T and Akhtar M (2022) Looking deeper into takotsubo's heart, Cardiovascular Research, 10.1093/cvr/cvac069, 118:8, (1851-1853), Online publication date: 29-Jun-2022. Godsman N, Kohlhaas M, Nickel A, Cheyne L, Mingarelli M, Schweiger L, Hepburn C, Munts C, Welch A, Delibegovic M, Van Bilsen M, Maack C and Dawson D (2021) Metabolic alterations in a rat model of takotsubo syndrome, Cardiovascular Research, 10.1093/cvr/cvab081, 118:8, (1932-1946), Online publication date: 29-Jun-2022. Karnati S, Guntas G, Rajendran R, Shityakov S, Höring M, Liebisch G, Kosanovic D, Ergün S, Nagai M and Förster C (2022) Quantitative Lipidomic Analysis of Takotsubo Syndrome Patients' Serum, Frontiers in Cardiovascular Medicine, 10.3389/fcvm.2022.797154, 9 Omerovic E, Citro R, Bossone E, Redfors B, Backs J, Bruns B, Ciccarelli M, Couch L, Dawson D, Grassi G, Iacoviello M, Parodi G, Schneider B, Templin C, Ghadri J, Thum T, Chioncel O, Tocchetti C, van der Velden J, Heymans S and Lyon A (2022) Pathophysiology of T akotsubo syndrome – a joint scientific statement from the Heart Failure Association T akotsubo Syndrome Study Group and Myocardial Function Working Group of the E uropean Society of Cardiology – Part 1: overview and the central role for catecholamines and sympathetic nervous system , European Journal of Heart Failure, 10.1002/ejhf.2400, 24:2, (257-273), Online publication date: 1-Feb-2022. Madias J (2021) Insulin and short acting iv beta blockers: A "new" proposal for the acute management of takotsubo syndrome, International Journal of Cardiology, 10.1016/j.ijcard.2021.04.033, 334, (18-20), Online publication date: 1-Jul-2021. Nekolla S (2020) 10 years of PET/MR: Looking back for a moment, Journal of Nuclear Cardiology, 10.1007/s12350-020-02358-z, 27:5, (1421-1424), Online publication date: 1-Oct-2020. Manabe O, Naya M, Oyama-Manabe N, Koyanagawa K and Tamaki N (2018) The role of multimodality imaging in takotsubo cardiomyopathy, Journal of Nuclear Cardiology, 10.1007/s12350-018-1312-x, 26:5, (1602-1616), Online publication date: 1-Oct-2019. Rischpler C, Langwieser N and Nekolla S (2016) Cardiac PET/MRI enters the clinical arena! Finally…, Journal of Nuclear Cardiology, 10.1007/s12350-016-0671-4, 25:3, (795-796), Online publication date: 1-Jun-2018. Wang Q, Yu H, Jiang C, Sun R, Qi M, Sun S, Xu G, Cai H, Zhang Z, Zhao F, Kou X, Yu J and Bai F (2018) Cerebral infarction as initial presentation in stress cardiomyopathy, Medicine, 10.1097/MD.0000000000010804, 97:20, (e10804), Online publication date: 1-May-2018. Dawson D (2017) Acute stress-induced (takotsubo) cardiomyopathy, Heart, 10.1136/heartjnl-2017-311579, 104:2, (96-102), Online publication date: 1-Jan-2018. Nassenstein K, Nensa F and Rischpler C (2018) Cardiac PET/MRI PET/MR Imaging: Current and Emerging Applications, 10.1007/978-3-319-69641-6_8, (107-122), . Nekolla S, van Marwick S, Schachoff S, Kunze K and Rischpler C (2017) Cardiovascular PET/MRI: Technical Considerations and Outlook, Current Cardiovascular Imaging Reports, 10.1007/s12410-017-9435-z, 10:11, Online publication date: 1-Nov-2017. Nensa F, Poeppel T, Tezgah E, Heusch P, Nassenstein K, Forsting M, Bockisch A, Erbel R and Schlosser T (2017) Integrated Assessment of Cardiac PET/MRI: Co-Registered PET and MRI Polar Plots by Mutual MR-Based Segmentation of the Left Ventricular Myocardium, World Journal of Cardiovascular Diseases, 10.4236/wjcd.2017.74010, 07:04, (91-104), . Nassenstein K and Nensa F (2016) Cardiovascular PET/MRI: Initial Clinical Experience, Current Cardiovascular Imaging Reports, 10.1007/s12410-016-9392-y, 9:11, Online publication date: 1-Nov-2016. Kurisu S and Kihara Y (2016) Editorial: Variants of takotsubo cardiomyopathy, Journal of Cardiology Cases, 10.1016/j.jccase.2016.04.001, 14:1, (24-25), Online publication date: 1-Jul-2016. Nensa F, Poeppel T and Schlosser T (2015) Potential Role of Cardiac PET/MRI in Cardiovascular Disease: Initial Experience Molecular and Multimodality Imaging in Cardiovascular Disease, 10.1007/978-3-319-19611-4_2, (13-27), . van de Veerdonk M, Marcus J, Bogaard H and Noordegraaf A (2015) Cardiac MRI and PET Scanning in Right Ventricular Failure The Right Ventricle in Health and Disease, 10.1007/978-1-4939-1065-6_12, (265-281), . Veerdonk M, Marcus J, Bogaard H and Noordegraaf A (2014) State of the Art: Advanced Imaging of the Right Ventricle and Pulmonary Circulation in Humans (2013 Grover Conference Series), Pulmonary Circulation, 10.1086/675978, 4:2, (158-168), Online publication date: 1-Jun-2014. Sachdeva J, Dai W and Kloner R (2014) Functional and Histological Assessment of an Experimental Model of Takotsubo's Cardiomyopathy, Journal of the American Heart Association, 3:3, Online publication date: 22-May-2014. Harms H, van de Veerdonk M, Lammertsma A, Noordegraaf A and Bogaard H (2013) Pulmonary vascular remodeling and right heart failure in pulmonary hypertension: future role of positron emission tomography in decoding the enigma, Translational Respiratory Medicine, 10.1186/2213-0802-1-16, 1:1, Online publication date: 1-Dec-2013. Nensa F, Poeppel T, Beiderwellen K, Schelhorn J, Mahabadi A, Erbel R, Heusch P, Nassenstein K, Bockisch A, Forsting M and Schlosser T (2013) Hybrid PET/MR Imaging of the Heart: Feasibility and Initial Results, Radiology, 10.1148/radiol.13130231, 268:2, (366-373), Online publication date: 1-Aug-2013. Nappi C and El Fakhri G (2013) State of the Art in Cardiac Hybrid Technology: PET/MR, Current Cardiovascular Imaging Reports, 10.1007/s12410-013-9213-5, 6:4, (338-345), Online publication date: 1-Aug-2013. November 20, 2012Vol 126, Issue 21 Advertisement Article InformationMetrics © 2012 American Heart Association, Inc.https://doi.org/10.1161/CIRCULATIONAHA.112.134346PMID: 23169256 Originally publishedNovember 20, 2012 PDF download Advertisement SubjectsComputerized Tomography (CT)Contractile FunctionMetabolismNuclear Cardiology and PET
Referência(s)