Fast hole transport in polyvinylcarbazole

1979; Wiley; Volume: 51; Issue: 2 Linguagem: Inglês

10.1002/pssa.2210510216

ISSN

1521-396X

Autores

B. Reimer, H. Bäßler,

Tópico(s)

Thin-Film Transistor Technologies

Resumo

physica status solidi (a)Volume 51, Issue 2 p. 445-451 Original Paper Fast hole transport in polyvinylcarbazole B. Reimer, B. Reimer AEG-Telefunken, Warstein Search for more papers by this authorH. Bässler, H. Bässler Fachbereich Physikalische Chemie der Philipps-Universität, Marburg Search for more papers by this author B. Reimer, B. Reimer AEG-Telefunken, Warstein Search for more papers by this authorH. Bässler, H. Bässler Fachbereich Physikalische Chemie der Philipps-Universität, Marburg Search for more papers by this author First published: 16 February 1979 https://doi.org/10.1002/pssa.2210510216Citations: 39 D-4788 Warstein 2, BRD. Auf den Lahnbergen, D-3550 Marburg, BRD. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstracten The initial peak in photocurrent transients observed with Nesaglass-Se-PVK-Au samples is shown to be a space charge limited hole current injected from either Se or Au. The effective hole mobility is of the order 10−3 cm2/Vs at F = 2 × 105 V/cm and influenced by shallow trapping at localized sites of structural origin. The essential conclusion is that fluctuations in the hopping site distances occurring in a molecular solid when going from the crystalline to a disordered phase do not significantly alter its charge transport properties. Time decay of the initial current pulse as well as the tail in the final transit signal are determined by moderately deep trapping and subsequent thermal release. Abstractde Es wird gezeigt, daß das anfängliche Photostrom-Maximum, das bei Flugzeitmessungen an Nesaglas-Se-PVK-Au-Proben auftritt, ein raumladugsbeschränkter Löcherstrom ist, der von Se oder Au injiziert wird. Die effektive Beweglichkeit ergibt sich zu etwa 10−3 cm2/Vs bei F = 2 × 105 V/cm. Sie ist durch Einfang in flache Haftstellen strukturellen Ursprungs beeinflußt. Die wesentliche Schlußfolgerung ist, daß Fluktuationen im Abstand von Hüpfzentren, wie sie in einem molekularen Festkörper beim Übergang von der kristallinen zu einer ungeordneten Phase auftreten, dessen Ladungstransport-Eigenschaften nicht wesentlich verändern. Zeitlicher Abfall des anfäglichen Strompulses und der Ausläufer des Transit-Signals sind bestimmt durch Trägereinfang in Haftstellen mittlerer Tiefe und nachfolgender thermischer Entleerung. References 1 A. Szymanski and M. M. Labes, J. chem. Phys. 50, 3568 (1969). 2 D. M. Pai. J. chem. Phys. 52, 2285 (1970). 3 J. Mort, Phys. Rev. B 5, 3329 (1972). 4 W. D. Gill, J. appl. Phys. 43, 5033 (1972); in: Photoconductivity and Related Phenomena Ed. J. Mort and D. M. Pai, Elsevier Publ. Co., Amsterdam/New York 1976 (p. 333), and further references therein. 5 M. Ohnishi, Japan J. appl. Phys. 16, 1717 (1977). 6 L. B. Schein, Phys. Rev. B 15, 1024 (1977). 7 H. Scher and E. W. Montroll, Phys. Rev. B 12, 2455 (1975). 8 G. Pfister and H. Scher, Phys. Rev. B 15, 2062 (1977). 9 J. Mort, G. Pfister, and S. Grammatica, Solid State Commun. 18, 693 (1976). 10 G. Pfister and C. H. Griffith, Phys. Rev. Letters 40, 659 (1978). 11 S. M. Godson and J. Hirsch, Solid State Commun. 20, 285 (1976). 12 See e. g. D. C. Hoesterey and G. M. Letson, J. Phys. Chem. Solids 24, 1609 (1963). N. Karl, Adv. Solid State Phys. 14, 261 (1974). 13 R. Eiermann, W. Hofberger, and H. Bässler, J. non-crystall. Solids 28, 415 (1978). 14 M. Silver and K. Resko, Conf. Electrical and Related Properties of Organic Solids, Wroclaw 1978. 15 M. J. Schaffman and M. Silver, in the press. 16 W. Hofberger and H. Bässler, Phys. stat. sol. (b) 69, 725 (1975). 17 H. Bässler, J. chem. Phys. 49, 5198 (1968). 18 P. Holtzman and R. C. Jarnagin, J. chem. Phys. 51, 2251 (1975). 19 R. B. Kellogg and A. Prock, J. chem. Phys. 63, 3161 (1975). 20 W. Klöpffer, N. J. Turro, M. F. Chow, and Y. Noguchi, Chem. Phys. Letters 54, 457 (1978). 21 J. Hirsch, J. Phys. C, in the press. 22 P. J. Reucroft and K. Takahashi, J. non-crystall. Solids 17, 71 (1975) 23 H. Bauser and W. Klöpffer, Chem. Phys. Letters 7, 137 (1970). 24 J. Mort and A. I. Lakatos, J. non-crystall. Solids 4, 117 (1970). 25 S. Nešpurek and E. A. Silinsh, Phys. stat. sol. (a) 34, 747 (1976). 26 K.-P. Charlé and F. Willig, Chem. Phys. Letters 57, 253 (1978). 27 J. H. Sharp, Photogr. Sci. Engng. 11, 69 (1967). 28 M. Silver and L. Cohen, Phys. Rev. B 15, 3276 (1977). Citing Literature Volume51, Issue216 February 1979Pages 445-451 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX