PSORIASIS, INVOLUCRIN, AND PROTEIN KINASE C
1993; Wiley; Volume: 32; Issue: 5 Linguagem: Inglês
10.1111/j.1365-4362.1993.tb01467.x
ISSN1365-4632
AutoresHajime Iizuka, Hidetoshi Takahashi,
Tópico(s)Retinoids in leukemia and cellular processes
ResumoInternational Journal of DermatologyVolume 32, Issue 5 p. 333-338 PSORIASIS, INVOLUCRIN, AND PROTEIN KINASE C HAJIME IIZUKA M.D., Corresponding Author HAJIME IIZUKA M.D. From the Department of Dermatology, Asahikawa Medical College, Asahikawa, Japan.Address for correspondence: Hajime Iizuka, M.D., Department of Dermatology, Asahikawa Medical College, 3–11 Nishikagura, Asahikawa, 078, Japan.Search for more papers by this authorHIDETOSHI TAKAHASHI M.D., HIDETOSHI TAKAHASHI M.D. From the Department of Dermatology, Asahikawa Medical College, Asahikawa, Japan.Search for more papers by this author HAJIME IIZUKA M.D., Corresponding Author HAJIME IIZUKA M.D. From the Department of Dermatology, Asahikawa Medical College, Asahikawa, Japan.Address for correspondence: Hajime Iizuka, M.D., Department of Dermatology, Asahikawa Medical College, 3–11 Nishikagura, Asahikawa, 078, Japan.Search for more papers by this authorHIDETOSHI TAKAHASHI M.D., HIDETOSHI TAKAHASHI M.D. From the Department of Dermatology, Asahikawa Medical College, Asahikawa, Japan.Search for more papers by this author First published: May 1993 https://doi.org/10.1111/j.1365-4362.1993.tb01467.xCitations: 24 Supported in part by grant 03670519 from the Ministry of Education, Science and Culture of Japan (H.I.), a grant from the Ministry of Health and Welfare, Japan (H.I.), and a grant from the Japanese Dermatological Association (H.T.). AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES 1 Lavker RM, Sun T-T. Epidermal stem cells. J Invest Dermatol 1983; 81: 121s–127s. 10.1111/1523-1747.ep12540880 CASPubMedWeb of Science®Google Scholar 2 Potten CS. Cell cycles in cell hierarchies. Int J Radiol Biol 1986; 49: 257–278. 10.1080/09553008514552541 PubMedWeb of Science®Google Scholar 3 Cotsarelis G, Cheng S-Z, Dong G, et al. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 1989; 57: 201–209. 10.1016/0092-8674(89)90958-6 CASPubMedWeb of Science®Google Scholar 4 Rowe L, Dixon WJ. Clustering of mitotic activity in human epidermis. J Invest Dermatol 1972; 58: 16–23. 10.1111/1523-1747.ep13077200 PubMedWeb of Science®Google Scholar 5 Regnier M, Vaigot P, Darmon M, et al. Onset of epidermal differentiation in rapidly proliferating basal keratinocytes. J Invest Dermatol 1986; 472–476. Google Scholar 6 Dover R, Watt F. Measurement of the rate of epidermal terminal differentiation: expression of involucrin by Sphase keratinocytes in culture and in psoriatic plaques. J Invest Dermatol 1987; 89: 349–352. 10.1111/1523-1747.ep12471751 CASPubMedWeb of Science®Google Scholar 7 Mansbridge JN, Knapp AM. Changes in keratinocyte maturation during wound healing. J Invest Dermatol 1987; 89: 253–263. 10.1111/1523-1747.ep12471216 CASPubMedWeb of Science®Google Scholar 8 Leigh IM, Pulford KA, Ramaekers PCS, et al. Psoriasis: maintenance of an intact monolayer basal cell differentiation compartment in spite of hyperproliferation. Br J Dermatol 1985; 113: 53–64. 10.1111/j.1365-2133.1985.tb02044.x PubMedWeb of Science®Google Scholar 9 Iizuka H. Pathophysiology of psoriasis: analysis of keratinocytes. Textbook of Japanese Dermatological Association 1991 (in Japanese). Google Scholar 10 Iizuka H, Sakai H, Tamura T. Effects of the tumor promoter, phorbol 12-myristate, 13-acetate, on the epidermal adenylate cyclase system: evidence for adenylate cyclase-regularion by protein kinase C. J Invest Dermatol 1989; 93: 387–391. 10.1111/1523-1747.ep12280284 CASPubMedWeb of Science®Google Scholar 11 Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 1984; 308: 693–698. 10.1038/308693a0 CASPubMedWeb of Science®Google Scholar 12 Mahle G. Infrastructure. In: PD Mier, PCM Kerkhof, eds. Textbook of psoriasis. Edinburgh : Churchill Livingstone, 1986: 113. Google Scholar 13 Johanneson A, Hammar H. The rate of formation of corneocyte layers after stripping the non-involved psoriatic skin and its relation to parakeratosis and epidermal enzyme levels. J Invest Dermatol 1980; 74: 226–229. 10.1111/1523-1747.ep12541768 CASPubMedWeb of Science®Google Scholar 14 Bernerd F, Magnaldo T, Darmon M. Delayed onset of epidermal differentiation in psoriasis. J Invest Dermatol 1992; 98: 902–910. 10.1111/1523-1747.ep12460344 CASPubMedWeb of Science®Google Scholar 15 Bernard BA, Asselineau D, Schaffar-Deshayes L, et al. Abnormal sequence of expression of differentiation markers in psoriatic epidermis: inversion of two steps in the differentiation program. J Invest Dermatol 1988; 90: 801–805. 10.1111/1523-1747.ep12462014 PubMedWeb of Science®Google Scholar 16 Hawley-Nelson P, Stanley JR, Schmidt J, et al. The tumor promoter, 12-o-tetradecanoylphorbol-13-acetate accelerates keratinocyte differentiation and stimulates growth of an unidentified cell type in cultured human epidermis. Exp Cell Res 1982; 137: 155–167. 10.1016/0014-4827(82)90017-9 CASPubMedWeb of Science®Google Scholar 17 Eckert RL. Structure, function, and differentiation of the keratinocyte. Physiol Rev 1989; 69: 1316–1346. 10.1152/physrev.1989.69.4.1316 CASPubMedWeb of Science®Google Scholar 18 Hohl D. Cornified cell envelope. Dermatologica 1990; 180: 201–211. 10.1159/000248031 CASPubMedWeb of Science®Google Scholar 19 Rice RH, Green H. Presence in human epidermal cells of a soluble protein precursor of the cross-linked envelope: activation of the cross-linking by calcium ions. Cell 1979; 18: 681–694. 10.1016/0092-8674(79)90123-5 CASPubMedWeb of Science®Google Scholar 20 Thacher SM, Rice RH. Keratinocyte-specific transglutaminase of cultured human epidermal cells: relation to cross-linked envelope formation and terminal diff erentiation. Cell 1985; 40: 685–695. 10.1016/0092-8674(85)90217-X CASPubMedWeb of Science®Google Scholar 21 Thacher SM. Purification of keratinocyte transglutaminase and its expression during squamous differentiation. J Invest Dermatol 1989; 89: 578–584. Google Scholar 22 Phillips MA, Stewart BE, Qin Q, et al. Primary structure of kerarinocyte transglutaminase. Proc Natl Acad Sci USA 1990; 87: 9333–9337. 10.1073/pnas.87.23.9333 CASPubMedWeb of Science®Google Scholar 23 Kim HC, Idler WW, Kim IG, et al. The complete amino acid sequence of the human transglutaminase K enzyme deduced from the nucleic acid sequences of cDNA clones. J Biol Chem 1991; 266: 536–539. CASPubMedWeb of Science®Google Scholar 24 Kim HC, Lewis MS, Gorman JJ, et al. Protransglutaminase E from guinea pig skin. J Biol Chem 1990; 265: 21971–21978. CASPubMedWeb of Science®Google Scholar 25 Yuspa SH, Ben T, Steinert P. Retinoic acid induces transglutaminase activity but inhibits cornification of cultured epidermal cells. J Biol Chem 1982; 257: 9906–9908. CASPubMedWeb of Science®Google Scholar 26 Lichti U, Ben T, Yuspa SH. Retinoic acid-induced transglutaminase in mouse epidermal cells is distinct from epidermal transglutaminase. J Biol Chem 1985; 260: 1422–1426. CASPubMedWeb of Science®Google Scholar 27 Rorke EA, Eckert RL. Stable expression of transfected human involucrin gene in various cell types: evidence for in situ cross-linking by type I and type II transglutaminase. J Invest Dermatol 1991; 97: 543–548. 10.1111/1523-1747.ep12481579 CASPubMedWeb of Science®Google Scholar 28 Lichti U, Yuspa SH. Modulation of tissue and epidermal transglutaminase in mouse epidermal cells after treatment with 12-o-tetradecanoylphorbol-13-acetare and/or retinoic acid in vivoand in vitro. Cancer Res 1988; 48: 74–81. CASPubMedWeb of Science®Google Scholar 29 Bohman D, Bos TJ, Admon A, et al. Human protooncogene c-jun encodes a DNA binding protein with structural and functional properties of transcription factor AP-1. Science 1987; 238: 1386–1392. 10.1126/science.2825349 CASPubMedWeb of Science®Google Scholar 30 Chiu R, Boyle WJ, Meek J, et al. The c-Fos protein interacts with c-Jun/AP-1 to stimulate transcription of AP-1 responsive genes. Cell 1988; 54: 541–552. 10.1016/0092-8674(88)90076-1 CASPubMedWeb of Science®Google Scholar 31 Boyle WJ, Smeal T, Defize LHK, et al. Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA binding activity. Cell 1991; 64: 573–584. 10.1016/0092-8674(91)90241-P CASPubMedWeb of Science®Google Scholar 32 Eckert RL, Green H. Structure and evolution of the human involucrin gene. Cell 1986; 46: 583–589. 10.1016/0092-8674(86)90884-6 CASPubMedWeb of Science®Google Scholar 33 Palmiter RD, Sandgren EP, Avarbock MR, et al. Heterologous introns can enhance expression of transgenes in mice. Proc Natl Acad Sci USA 1991; 88: 478–482. 10.1073/pnas.88.2.478 CASPubMedWeb of Science®Google Scholar 34 Simon M, Green H. Involucrin in the epidermal cells of subprimares. J invest Dermatol 1989; 92: 721–724. 10.1111/1523-1747.ep12721568 CASPubMedWeb of Science®Google Scholar 35 Takahashi H, Iizuka H. Analysis of 5′-upstream promoter region of human involucrin gene: activation by 12-o-tetradeanoylphorbol-13-acetate. J Invest Dermatol 1993; 100: 10–15. 10.1111/1523-1747.ep12349867 CASPubMedWeb of Science®Google Scholar 36 Diamond MI, Miner JN, Yoshinaga SK, et al. Transcriptional factor interactions: selectors of positive or negative regulation from a single DNA element. Science 1990; 249: 1266–1272. 10.1126/science.2119054 CASPubMedWeb of Science®Google Scholar 37 Jonat C, Rahmsdorf HJ, Park K-K, et al. Antitumor promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell 1990; 62: 1189–1204. 10.1016/0092-8674(90)90395-U CASPubMedWeb of Science®Google Scholar 38 Elder JT, Fisher GJ, Zhang Q-Y, et al. Retinoic acid receptor gene expression in human skin. J Invest Dermatol 1991; 96: 425–433. 10.1111/1523-1747.ep12469889 CASPubMedWeb of Science®Google Scholar 39 Mangelsdorf DJ, Ong ES, Dyck JA, et al. Nuclear receptor that identifies a novel retinoic acid response pathway. Nature 1990; 345: 224–229. 10.1038/345224a0 CASPubMedWeb of Science®Google Scholar 40 Elder JT, Astrom A, Pettersson U, et al. Differential regulation of retinoic acid receptors and binding proteins in human skin. J Invest Dermatol 1992; 98: 673–679. 10.1111/1523-1747.ep12499896 CASPubMedWeb of Science®Google Scholar 41 Schuele R, Rangarajan P, Yang N, et al. Retinoic acid is a negative regulator of AP-1 responsive genes. Proc Natl Acad Sci USA 1991; 88: 6092–6096. 10.1073/pnas.88.14.6092 CASPubMedWeb of Science®Google Scholar 42 Takahashi H, Iizuka H. (manuscript in preparation). Google Scholar 43 Fisher GJ, Talwar HS, Baldassare JJ, et al. Increased phospholipase C-catalyzed hydrolysis of phosphatidyli-nositol-4, 5-bisphosphate and l,2-sn-diacylglycerol content in psoriatic involved compared to uninvolved and normal epidermis. J Invest Dermatol 1990; 95: 428–435. 10.1111/1523-1747.ep12555582 CASPubMedWeb of Science®Google Scholar 44 Martinet N, Benitani S, Nigra TP, et al. N1N8-bis(γ-glutamyl) spermidine cross-linking in epidermal-cell envelopes. Biochem J 1990; 271: 305–308. 10.1042/bj2710305 CASPubMedWeb of Science®Google Scholar 45 Mehrel T, Hohl D, Rothnagel JA, et al. Identification of a major keratinocyte cell envelope protein, loricrin. Cell 1990; 61: 1103–1112. 10.1016/0092-8674(90)90073-N CASPubMedWeb of Science®Google Scholar 46 Hohl D, Mehrel T, Lichti U, et al. Characterization of human loricrin. J Biol Chem 1991; 266: 6626–6636. CASPubMedWeb of Science®Google Scholar 47 Hohl D, Lichti U, Breitkreutz D, et al. Transcription of the human loricrin gene in vitro is induced by calcium and cell density and suppressed by retinoic acid. J Invest Dermatol 1991; 96: 414–418. 10.1111/1523-1747.ep12469779 CASPubMedWeb of Science®Google Scholar 48 Nagae S, Lichti U, De Luca LM, et al. Effect of retinoic acid on cornified envelope formation: difference between spontaneous envelope formation in vivo or in vitro and expression of envelope competence. J Invest Dermatol 1987; 89: 51–58. 10.1111/1523-1747.ep12580383 CASPubMedWeb of Science®Google Scholar 49 Rosenthal DR, Griffiths CEM, Yuspa SH, et al. Acute or chronic topical retinoic acid treatment of human skin in vivo alter the expression of epidermal transglutaminase, loricirin, involucrin, filaggrin, and keratin 6 and 13 but not keratin 1, 10, and 14. J Invest Dermatol 1992; 98: 343–350. 10.1111/1523-1747.ep12499802 PubMedWeb of Science®Google Scholar 50 Hohl D, Huber M, Thacher S, et al. Expression patterns of loricrin in dermatological disorders. J Invest Dermatol 1992; 98: 530. Web of Science®Google Scholar 51 Horn F, Marks F, Fisher GJ, et al. Decreased protein kinase C activity in psoriatic versus normal epidermis. J Invest Dermatol 1987; 88: 220–222. 10.1111/1523-1747.ep12525380 CASPubMedWeb of Science®Google Scholar 52 Basset-Seguin N, Escot C, Moles JP, et al. C-fos and c-jun proto-oncogene expression is decreased in psoriasis: an in situ quantitative analysis. J Invest Dermatol 1991; 97: 672–678. 10.1111/1523-1747.ep12483807 CASPubMedWeb of Science®Google Scholar 53 Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 1988; 334: 661–665. 10.1038/334661a0 CASPubMedWeb of Science®Google Scholar 54 Osada S, Mizuno K, Saido TC, et al. A phorbol ester receptor/protein kinase C family predominantly expressed in lung and skin. J Biol Chem 1990; 265: 22434–22440. CASPubMedWeb of Science®Google Scholar 55 Leibersperger H, Gschwendt M, Gernold M, et al. Immunological demonstration of a calcium-unresponsive protein kinase C of the δ-type in different species and murine tissues. J Biol Chem 1991; 266: 14778–14784. CASPubMedWeb of Science®Google Scholar 56 Fisher GJ, Elder JT, Leach K, et al. Differential expression of conventional and nonconventional protein kinase C isozymes in normal and psoriatic skin. J Invest Dermatol 1992; 98: 635. Web of Science®Google Scholar 57 Watanabe T, Ono Y, Taniyama Y, et al. Cell division arrest induced by phorbol ester in CHO cells overexpressing protein kinase C δ-subspecies. Proc Natl Acad Sci USA 1992; 89: 10159–10163. 10.1073/pnas.89.21.10159 CASPubMedWeb of Science®Google Scholar 58 Eldar H, Zisman Y, Ullrich A, et al. Overexpression of protein kinase C a-subtype in Swiss/3T3 fibroblasts cause loss of both high and low affinity receptor number for epidermal growth factor. J Biol Chem 1990; 265: 13290–13296. CASPubMedWeb of Science®Google Scholar 59 Inohara S, Tatsumi Y, Tanaka Y, et al. Immunohistological identification of protein kinase C isozymes in normal and psoriatic epidermis. Arch Dermatol Res 1988; 280: 454–455. 10.1007/BF00429987 PubMedWeb of Science®Google Scholar 60 Koyama Y, Hachiya T, Hagiwara M, et al. Expression of protein kinase C isozyme in epidermal Langerhans cells of the mouse. J Invest Dermatol 1990; 94: 677–680. 10.1111/1523-1747.ep12876255 CASPubMedWeb of Science®Google Scholar 61 Fisher GJ, Tavakkol A, Griffiths CEM, et al. Differential expression of protein kinase C isozymes in psoriatic lesions versus normal epidermis. J Invest Dermatol 1990; 94: 524. Google Scholar 62 Kuroki T, Osada S, Hashimoto Y, et al. Predominant expression of nPKCη, a Ca++-independent isoform of protein kinase C in epithelial tissues, in association with epithelial differentiation. J Cell Biol (in press). Google Scholar 63 Koizumi H, Ohkawara A, Kuroki T. Immunohistochemical demonstration of novel protein kinase C-η in normal human skin and skin diseases. J Dermatol Sci 1992; 4: 123. 10.1016/0923-1811(92)90152-2 Google Scholar 64 Schroeder WT, Thacher SM, Stewart-Galetka S, et al. Type I transglutaminase: expression in human skin and psoriasis. J Invest Dermatol 1992; 99: 27–34. 10.1111/1523-1747.ep12611394 CASPubMedWeb of Science®Google Scholar 65 Elder JT, Fisher GJ, Lindquist PB, et al. Overexpression of transforming growth factor a in psoriatic epidermis. Science 1989; 243: 811–814. 10.1126/science.2916128 CASPubMedWeb of Science®Google Scholar 66 Elder JT, Tavakkol A, Klein SB, et al. Protooncogene expression in normal and psoriatic skin. J Invest Dermatol 1990; 94: 19–25. 10.1111/1523-1747.ep12873313 CASPubMedWeb of Science®Google Scholar 67 Pittelkow MR, Lindquist PB, Abraham RT, et al. Induction of transforming growth factor-a expression in human keratinocytes by phorbol esters. J Biol Chem 1989; 264: 5164–5171. CASPubMedWeb of Science®Google Scholar 68 Sandgren EP, Luetteke NC, Palmiter RD, et al. Overexpression of TGFα in transgenic mice: induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast. Cell 1990; 61: 1121–1135. 10.1016/0092-8674(90)90075-P CASPubMedWeb of Science®Google Scholar 69 Jhappann C, Stahle C, Harkins RN, et al. TGFα overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas. Cell 1990; 61: 1137–1146. 10.1016/0092-8674(90)90076-Q CASPubMedWeb of Science®Google Scholar 70 Matsui Y, Halter SA, Holt JT, et al. Development of mammary hyperplasia and neoplasia in MMTV-TGFα transgenic mice. Cell 1990; 61: 1147–1155. 10.1016/0092-8674(90)90077-R CASPubMedWeb of Science®Google Scholar 71 Roop D, Rothnagel MA, Longley MA, et al. Development of transgenic mouse models of human skin disease. In: A Ohkawara, J McGuire, eds. The biology of the epidermis. Amsterdam : Elsevier, 1992: 161. Web of Science®Google Scholar 72 Roop D. Targeting gene expression to the epidermis: potential applications. William Montagna Lecture. Annual Meeting for Society for Investigative Dermatology 1992. Google Scholar 73 Tagami H, Iwatsuki K, Takematsu H. Psoriasis and leukocyte chemotaxis. J Invest Dermatol 1987; 88: 18s–23s. 10.1111/1523-1747.ep12468894 CASPubMedWeb of Science®Google Scholar 74 Ruzicka T. Eicosanoids in psoriasis. J Dermatol Sci 1990; 1: 415–424. 10.1016/0923-1811(90)90011-2 CASPubMedGoogle Scholar 75 Schroeder J-M, Gregory H, Young J, et al. Neutrophilactivating proteins in psoriasis. J Invest Dermatol 1992; 98: 241–247. 10.1111/1523-1747.ep12556058 CASPubMedWeb of Science®Google Scholar 76 Barker JNWN, Jones ML, Mitra RS, et al. Modulation of keratinocyte-derived interleukin-8 which is chemotactic for neutrophils and T lymphocytes. Am J Pathol 1991; 139: 869–876. CASPubMedWeb of Science®Google Scholar 77 Blanton RA, Kupper TS, McDougal JK, et al. Regulation of interleukin 1 and its receptor in human keratinocytes. Proc Natl Acad Sci USA 1989; 86: 1273–1277. 10.1073/pnas.86.4.1273 CASPubMedWeb of Science®Google Scholar 78 Pennica D, Nedwin GE, Hayflick JS, et al. Human tumor necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature 1984; 312: 724–728. 10.1038/312724a0 CASPubMedWeb of Science®Google Scholar 79 Kast R, Fuerstenberger G, Marks F. Activation of a keratinocyte phospholipase A2 by bradykinin and 4β-phorbol 12-myristate 13 acetate. Eur J Biochem 1991; 202: 941–950. 10.1111/j.1432-1033.1991.tb16454.x CASPubMedWeb of Science®Google Scholar 80 Hammer R, Maika SD, Richardson JA, et al. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human β2m: an animal model of HLA-B27-associated human disorders. Cell 1990; 63: 1099–1112. 10.1016/0092-8674(90)90512-D CASPubMedWeb of Science®Google Scholar 81 Ono Y, Fujii T, Ogita K, et al. Protein kinase C-ζ subspecies from rat brain: its structure, expression, and properties. Proc Natl Acad Sci USA 1989; 86: 3099–3103. 10.1073/pnas.86.9.3099 CASPubMedWeb of Science®Google Scholar 82 Bauer FW. Cell kinetics. In: PD Mier, PCM Kerklioff, eds. Textbook of psoriasis. Edinburgh : Churchill Livingstone, 1986: 100. Web of Science®Google Scholar Citing Literature Volume32, Issue5May 1993Pages 333-338 ReferencesRelatedInformation
Referência(s)